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A dark force can impact the cosmological history of dark matter (DM), both explaining observed cores in
dwarf galaxies and setting the DM relic density through annihilation to dark force bosons. For GeV – TeV DM
mass, DM self-scattering in dwarf galaxy halos exhibits quantum mechanical resonances, analogous to a Som-
merfeld enhancement for annihilation. We show that a simple model of DM with a dark force can accommodate
all astrophysical bounds on self-interactions in halos and explain the observed relic density, through a single
coupling constant.

I. Introduction: The paradigm of cold, collisionless dark
matter (DM) has been extraordinarily successful in explain-
ing astrophysical observations of structure, from the recom-
bination epoch to the present large scale structure of the Uni-
verse. Although all evidence for DM is from its gravitational
influence, it is expected that DM possesses some type of in-
teractions beyond gravity. Non-gravitational interactions are
required to produce DM particles in the early Universe, and
ultimately determine the DM density observed today.

Despite its great success, it is unclear whether cold, col-
lisionless DM can successfully account for the small scale
structure of the Universe, which may indicate other interac-
tions besides gravity play a role in structure formation. Pre-
cision observations of dwarf galaxies by THINGS show DM
mass distributions with flat cores, compared to steep cusps
predicted by collisionless DM simulations [1]. The gravita-
tional effect of massive baryonic outflows from supernovae
can potentially flatten central DM cusps [2], but it is unknown
whether this effect can explain the observed cores in other less
luminous (more DM-dominated) dwarf galaxies [3]. Another
discrepancy is the apparent underabundance of Milky Way
(MW) satellite dwarf galaxies, compared to predictions from
collisionless DM simulations [4]. The missing low mass satel-
lites may simply be fainter than expected if energy injection
from astrophysical processes strips away interstellar gas and
suppresses star formation [5]. However, this mechanism can-
not explain the apparent absence of the most massive subhalos
predicted by simulations [6] which are “too big to fail” in star
formation and are too dense to host any observed MW satel-
lite, according to their predicted stellar circular velocities [7].
The tension can be reduced when the appropriate scatter in the
subhalo population of halos is taken into account [8], though
this may raise the question why the Milky Way halo should be
statistically special.

These small scale structure anomalies can be explained if
DM, denoted X , is self-interacting [9]. Recent N-body simu-
lations have shown that a DM self-interaction cross section
per unit mass σT /mX ∼ 0.1 − 10 cm2/g can flatten the
central density within dwarf galaxies and subhalos to solve
the core/cusp problem [10, 11]. Moreover, the most mas-
sive subhalos can be reconciled with the observed MW satel-
lites since stellar circular velocities are reduced in their cen-
tral cores [10, 11]. At the same time, a variety of constraints

from larger scales (e.g., halo shapes of elliptical galaxy and
cluster halos [12], the Bullet cluster [13], subhalo evapora-
tion [14]) have suggested that σT /mX must be smaller on
these scales, motivating a velocity-dependent force [15, 16]
that gives σT /mX ∼ 10 cm2/g on dwarf scales [10], but is
suppressed on larger scales. However, simulations with a con-
stant cross section have shown that the aforementioned con-
straints are in fact much weaker than previously thought, and
a constant σT /mX ∼ 0.1 cm2/g is sufficient to solve small
scale structure anomalies while evading other bounds [11].

Given these results, it is important to explore the particle
physics nature of DM self-interactions. For typical weakly-
interacting DM models, self-scattering has a weak-scale cross
section σT ∼ 10−36 cm2, far too small to play a role in
galactic dynamics. An MeV-scale dark force mediator (de-
noted φ) is needed to give a much larger scattering cross sec-
tion, σT ∼ 1 cm2 (mX/g) ≈ 2×10−24 cm2 (mX/GeV), re-
quired to leave observable signatures on DM halos [15–19].
A perturbative calculation for σT from φ exchange gives
σT ≈ 4πα2
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2
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in the desired range. However, this calculation breaks down
for mφ . αXmX , and nonperturbative effects become im-
portant. These effects have not been studied in general and yet
are crucial for connecting dark forces to small scale structure.
In particular, DM self-scattering exhibits quantum mechanical
resonances, analogous to resonant Sommerfeld enhancement
for annihilation, as we show below.

In this Letter, we present a simple model where a dark force
can simultaneously set the DM abundance and solve small
scale structure anomalies. In the early Universe, XX̄ → φφ
provides an efficient annihilation channel for obtaining the
relic density during freeze-out. This same coupling resolves
structure problems through scattering on small scales while
remaining consistent with bounds on MW and cluster scales.
We consider both symmetric and asymmetric DM models
which involve attractive and repulsive DM self-interactions.
In calculating the scattering cross section, we take a numeri-
cal approach and cover the full parameter space including the



2

nonperturbative quantum mechanical regime which has not
been explored before. We show that resonances can arise for
a wide range of DM mass, mX ∼ GeV − TeV. Furthermore,
our numerical calculation confirms analytical formulae widely
used in literature for computing σT in the classical and Born
limits.

II. DM Annihilation and Elastic Scattering: We consider a
Dirac fermion DM particle X , coupled to a dark force vector
boson φ with mass mφ via

Lint = gXX̄γ
µXφµ, (2)

where gX is the coupling constant. We assume that X is
weakly coupled to the SM (e.g., through kinetic mixing of
φ with U(1)Y hypercharge) so that X thermalizes with the
visible sector in the early Universe [21].

DM freeze-out is governed by the velocity-weighted anni-
hilation cross section for XX̄ → φφ, given by 〈σv〉an ≈
πα2

X/m
2
X where αX ≡ g2X/(4π). For symmetric DM,

where DM consists of equal densities of X and X̄ , we re-
quire 〈σv〉an ≈ 6× 10−26 cm3/s to obtain the observed relic
density. For asymmetric DM, the present DM density is deter-
mined by a primordial asymmetry between X and X̄ , in anal-
ogy to the baryon asymmetry. In this case, we require larger
〈σv〉an to deplete the symmetricX, X̄ density, leaving behind
only the residual asymmetricX density as DM. Thus, we have
αX & 4×10−5 (mX/GeV)1 , with the lower bound saturated
for symmetric DM. Asymmetric DM allows for a broader re-
gion of parameter space, since annihilation XX̄ → φφ suffi-
cient to set the relic density only places a lower bound on αX ,
rather than fixing it to a particular value as a function of mX .

In our model, the same dark force carrier φ also medi-
ates DM self-interactions. Here, the relevant quantity is the
scattering cross section weighted by the momentum transfer,
σT =

∫
dΩ (1− cos θ) dσ/dΩ, where dσ/dΩ is the usual dif-

ferential cross section. The nonrelativistic interaction between
two DM particles mediated by φ is described by a Yukawa po-
tential

V (r) = ±αX
r
e−mφr. (3)

Since φ is a vector, XX → XX scattering is repulsive (+),
while XX̄ → XX̄ is attractive (−). For symmetric DM, both
attractive (X-X̄) and repulsive (X-X or X̄-X̄) interactions
are present; for asymmetric DM, where DM consists of only
X after the freeze-out, self-interactions are only repulsive.

Since both scattering and annihilation occur through a com-
mon interaction, the cross sections are related. When φ

1 In our numerical result, we compute the relic density by solving numeri-
cally the Boltzmann equations for DM freeze-out, accounting for a possible
Sommerfeld enhancement in 〈σv〉 which is important for heavy DM. We
assumeX kinetically decouples at a temperature 0.5MeV, e.g., ifX were
weakly coupled to electrons [21]. For mX & 1 TeV, the Sommerfeld en-
hancement in the early Universe can lead to an O(1) suppression on αX .
This effect is very mild for light DM.
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FIG. 1: Velocity-dependence of σT for sample parameters within
different regimes. Blue line shows Born formula (4), in agreement
with numerical results (blue dots), for mX = 4 GeV, mφ = 7.2
MeV, αX = 1.8× 10−4. Green line shows classical formula (5), in
agreement with numerical results (stars), for mX = 2 TeV, mφ = 1
MeV, αX = 0.05. Red lines show σT in the resonant regime for
mX = 100 GeV, αX = 3.4 × 10−3, illustrating s-wave resonance
(solid, mφ = 205 MeV), p-wave resonance (dot-dashed, mφ = 20
MeV), and s-wave antiresonance (dashed, mφ = 77 MeV).

is massless, the scattering cross section scales roughly as
σT ∼ 〈σv〉an/v4. If this relation holds to dwarf scales
(v ∼ 10 km/s), the transfer cross section is σT /mX ∼
103 cm2/g (TeV/mX), which is too large compared to that
preferred by the simulation results [10, 11] unless the DM
mass is larger than 100 TeV. Therefore, a nonzero mφ is
essential, softening the velocity-dependence of σT at small v
due to the finite range of the dark force.

The calculation of σT for a Yukawa potential with mφ 6= 0
is non-trivial. We collect analytical results, where applicable,
in the appendix. Within the Born approximation (valid for
αXmX/mφ � 1), σT can be computed perturbatively. Out-
side the Born regime, multiple φ scatterings lead to a nonper-
turbative modification of the DM two-body wavefunction, and
an analytical approximation has been obtained only within
the classical limit (mXv/mφ � 1). However, outside the
Born and classical regimes, no analytic description is possi-
ble, and one must compute σT by solving the the Schrödinger
equation numerically using a partial wave analysis [17, 20].
Within this “resonant” regime, σT exhibits a rich structure of
quantum mechanical resonances (for the attractive potential
case).2. Computing σT within this regime is crucial for un-

2 Ref. [17] previously studied this effect for limited parameter choices mo-
tivated by cosmic ray excesses; here, we have adopted a more efficient
numerical procedure (described in a forthcoming publication [20]) allow-
ing us to explore the full parameter range in detail. The key difference
from previous studies is that we take the asymptotic radial wavefunction as
R`(r) ∝ cos δljl(kr)− sin δlnl(kr) when r →∞, where jl(nl) is the
spherical Bessel (Neumann) function, instead of sin(kr − πl/2 + δl)/r.
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derstanding for what parameters a dark force can explain si-
multaneously small scale structure problems and the DM relic
density.

To illustrate the different regimes and behaviors of DM self-
scattering, Fig. 1 shows σT /mX as a function of v for an
attractive potential, for several parameter choices. The blue
(green) line shows the analytic result for σT for a parameter
point within the Born (classical) regime (see appendix); these
formulae are in excellent agreement with our numerical re-
sults, shown by the blue dots (green stars). The red lines cor-
respond to three parameter points within the resonant regime.
The solid red line shows an s-wave resonance, with σT grow-
ing as v−2 at small velocity. The dot-dashed line shows a p-
wave resonance, where σT shows a resonant peak at finite v.
These two cases illustrate how σT may be enhanced at dwarf
scales due to resonances. The dashed line shows an exam-
ple with an antiresonance (the Ramsauer-Townsend effect),
which can suppress σT at small v. All of these parameters
have been chosen to give the correct DM relic density and
σT /mX ∼ 0.1 − 10 cm2/g to solve structure problems on
dwarf scales (except for the antiresonance case).

III. Results: We show the complete parameter space where
a dark force can account for DM small scale structure and
relic density. For scattering, to compare with astrophysi-
cal bounds, we consider the velocity-averaged cross section
〈σT 〉 =

∫
d3v σT e

− 1
2 v

2/v20/(2πv20)3/2, where v0 is the most
probable velocity for a DM particle. Fig. 2 shows contour
plots of 〈σT 〉 for two cases, symmetric and asymmetric DM,
in the mX -mφ parameter space.

For symmetric DM (Fig. 2, left), we take the average of at-
tractive and repulsive cross sections, σT = (σatt

T + σrep
T )/2,

with αX chosen to reproduce the observed DM relic density
at each point. The blue contour regions show 〈σT 〉/mX on
dwarf scales (v0 = 10 km/s) in the ranges 0.1 − 1 cm2/g
(light) and 1− 10 cm2/g (dark) to solve small scale structure
problems. The lower range is prefered for a constant cross
section; Ref. [11] found 0.1 cm2/g matched small scale struc-
ture observations, while 1 cm2/g caused too low central den-
sities in dwarf spheroidals. Simulations with a v-dependent
classical (attractive-only) force prefered the upper range (or
larger) [10]. The red (green) contours show 〈σT 〉/mX = 0.1
and 1 cm2/g on MW (cluster) scales with v0 = 200 (1000)
km/s, showing the approximate upper limits from observa-
tions. Ref. [11] found that 1 cm2/g produced a too-small
central DM density in galaxy clusters and is only marginally
consistent with MW-scale halo shape ellipticity constraints,
while 0.1 cm2/g is consistent with these constraints [11]. In
the resonant regime, we have computed σT numerically. This
region shows a pattern of resonances for mX ∼ 10 GeV
– TeV, where σatt

T is enhanced, allowing for larger mX for
fixed 〈σT 〉/mX . The dashed lines indicate where we use

With this improvement, we are able to perform efficient calculations for `
up to ∼ 1000.

analytic formulae to extrapolate our results into the Born
(mX � mφ/αX ) and classical (mX � mφ/v) regimes. Our
numerical calculation maps smoothly into these regions, again
confirming our agreement with the analytic formulae.3 The
crosses show the example parameters from Fig. 1 for the res-
onant (mX = 100 GeV), Born (mX = 4 GeV), and classical
(mX = 2 TeV) regimes.

Most of these resonant features correspond to s-wave res-
onances, and their location in parameter space is given ana-
lytically by mX ≈ π2n2mφ/(6αX), where n = 1, 2, 3, etc.
This condition was derived for Sommerfeld enhancements in
annihilation [22], but the same bound state formation arises in
scattering as well. Taking αX ' 4 × 10−5(mX/GeV) to fix
the relic density, we obtain mX ≈ 6.4 GeV(mφ/MeV)1/2n.
This condition matches the locations of resonances in our nu-
merical results.

For asymmetric DM (Fig. 2, right), we take a repulsive-
only cross section, σT = σrep

T , and no resonances occur. We
fix αX = 10−2, which provides sufficient depletion of the
symmetric X, X̄ density for mX . 300 GeV (dotted line);
above this line, ADM freeze-out would require an additional
annihilation channel or a larger αX (which changes the 〈σT 〉
contours). Numerical and analytic results for 〈σT 〉/mX are
indicated as in the symmetric case.

From sub-GeV to multi-TeV DM mass, our results show
that a dark force can successfully explain both DM struc-
ture and the DM relic density, for mφ ∼ 100 keV − GeV.
The mX . GeV region corresponds to the Born limit; here,
contours at different v0 converge, indicating that σT is ap-
proximately constant in v. At larger mX , σT is more sup-
pressed at larger v0. Therefore, possible evidence for DM
self-interactions on cluster scales [23] may point toward light
DM.

IV. Conclusions: Dark forces may play an important role
in the dynamics of DM, analogous to electromagnetic or nu-
clear forces in the visible sector. We have shown that a sim-
ple, generic model with a dark force can simultaneously ex-
plain the DM relic abundance during freeze-out and solve
small scale structure anomalies in dwarf galaxies and subha-
los, while satisfying constraints on larger galaxy and cluster
scales. We have presented a comprehensive picture of the
parameter space of our model, considering both symmetric
and asymmetric DM, with attractive or repulsive dark forces.
Within the full parameter space spanning these different cases,
we have shown that the DM relic density and self-scattering
can accommodate a wide range of DM and mediator masses.
Importantly for narrowing this range, future astrophysical data
favoring or more strongly excluding self-interactions on larger
scales would prefer mX . GeV or mX & GeV, respectively.
However, N-body simulations over a larger parameter region,

3 The small discrepancy on cluster scales is because 〈σT 〉 at these parame-
ters is dominated by phase space with v � v0, where the classical approx-
imation is not valid, even though mXv0/mφ � 1.
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FIG. 2: Symmetric (left) and asymmetric (right) DM parameter space in mX -mφ plane. Blue regions show where DM self-scattering solves
dwarf-scale structure anomalies, while red (green) lines show bounds from Milky Way (cluster) scales. Numerical values indicate 〈σT 〉/mX

in cm2/g on dwarf (“dw”), Milky Way (“MW”), and cluster (“cl”) scales. For symmetric DM, αX is fixed to obtain the observed relic density;
for asymmetric DM, αX = 10−2 is fixed to deplete X, X̄ density for mX . 300 GeV (dotted line). Dashed lines show extrapolation using
analytic formulae, while “x” marks parameter points utilized in Fig. 1.

including within the resonant regime, would be necessary for
detailed comparison with observations. Experimental tests
may also detect the dark force directly, depending on its cou-
pling to visible matter [24].
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Appendix: We collect analytic formulae for σT used in
the literature. In the Born regime (αXmX/mφ � 1), for
both attractive and repulsive forces, a perturbative calculation
gives [15]

σBorn
T =

8πα2
X

m2
Xv

4

[
log(1 +R2)−R2/(1 +R2)

]
(4)

where R ≡ mXv/mφ. In the classical regime (mXv/mφ �
1), a solution to the classical equations of motion gives for an
attractive potential [15, 25]

σclas
T ≈


4π
m2

φ
β2 ln

(
1 + β−1

)
β . 10−1

8π
m2

φ
β2/

(
1 + 1.5β1.65

)
10−1 . β . 103

π
m2

φ

(
lnβ + 1− 1

2 ln−1 β
)2

β & 103

(5)

where β ≡ 2αXmφ/(mXv
2), and for the repulsive case [26]

σclas
T ≈

{ 2π
m2

φ
β2 ln

(
1 + β−2

)
β . 1

π
m2

φ

(
ln 2β − ln ln 2β

)2
β & 1

. (6)
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