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We show that the ghost-free, 5 degree of freedom, Wess–Zumino (1970) massive gravity model
is acausal. By analyzing its characteristics, we demonstrate that shock wave solutions exhibit
superluminal behavior. Ironically, this pathology arises from the very constraint that removes the
Boulware-Deser ghost mode.
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INTRODUCTION

Over four decades ago, Isham, Salam and Strathdee
proposed a 2-tensor “f -g” theory [1] by adding to the
Einstein action that of a second vierbein, fµ

m, plus a
non-derivative coupling term, leaving a single common
coordinate invariance. Of particular interest is the limit
of non-dynamical (say flat) f , giving a finite range to the
gravitons due to the coupling “mass” term. It was rapidly
shown [2] however, that unlike their linearized massive
spin 2 Fierz-Pauli (FP) limits, these models suffered from
a ghost problem: generic non-linearities reinstate a 6th
degree of freedom (DoF), beyond the linearized 2s+1 = 5
DoF, one of which is necessarily ghost-like. A final twist,
also from that time, was Wess and Zumino’s [3] discov-
ery of a distinguished set of f -g mass terms of which at
least one is immune from this disease, keeping 5 DoF.
Because [3] was only published without detail in lecture
notes, it remained unknown. Separately, other analy-
ses showed that the linearized theory’s matter coupling
seemed to suffer a “vDVZ” discontinuity [4], as well as
a failure of the Birkhoff theorem [5]. Hence, the sub-
ject remained moribund until the recent (independent)
rediscovery [6] of the results [3] plus two new f -g mod-
els. This exhumation has, unsurprisingly, generated an
immense industry (see the recent survey [7]). Our pur-
pose is to re-inter f -g. We will show that the first, 5
DoF, Wess-Zumino, model is acausal. Our methods also
show that of the two remaining such models [6], one is
definitely acausal and the other likely so [8] [23]. Para-
doxically, acausalities arise precisely because of the very
constraint that removes the ghost. Note that there is no
conflict between acausality and ghostlessness, as witness
the old “charged” higher (s > 1) spin interactions with
Maxwell and gravity, say those of s = (3/2, 2) [13–15],
that are also invalidated only by acausality.

Our results will be obtained by using the method of
characteristics, analyzing the constraints’ shock wave dis-
continuities, in particular that of the “5th” scalar one
that results from combining the trace and double diver-

gence of the field equations, just as is done in the linear
FP model, to find a derivative-free constraint.

THE MODEL AND THE FIFTH CONSTRAINT

Our concrete 5 DoF model is

Gµν := Gµν +m2
(

fµν − gµνf
)

= 0 , (1)

where all indices are moved by the dynamical metric gµν
and its associated vierbein eµ

m; in particular fµν is the
fixed background vierbein fµ

m times eνm, and is mani-
festly symmetric on-shell. Vanishing of its antisymmet-
ric part yields 6 conditions. Taking the reference fµ

m

field as the flat bein is a popular choice but is not phys-
ically required; in fact, our results, both for acausality
and the absence of the sixth ghost mode, depend nei-
ther on f being flat nor the dimensionality of spacetime.
The parameter m2 reduces to the FP mass in the weak
e-field limit. Next, we proceed as in the FP development
and seek 5 constraints to reduce the a priori 10 metric
DoF (now that coordinate invariance is lost due to the
preferred background). The single derivative, 4-vector,
constraint is obviously (by the Bianchi identity) the co-
variant g-divergence of Equation (1),

0 = Cν := ∇
µ
Gµν = m2

(

∇.fν −∇νf
)

.

The scalar constraint results from taking the (covari-
antized) FP combination

0 = C := ∇µ

(

ℓµν∇.Gν

)

+
m2

2
G (2)

with ℓµν := ℓµmeνm, where ℓµm is the inverse of the
background vierbein fµ

m. The proof that C is indeed
a constraint, i.e., devoid of second derivatives, is sim-
ple: following [16], we observe that the (torsion-free)
Levi–Civita spin connection ω(e)µ

m
n corresponding to

the vierbeine eµ
m will in general be torsion-full if em-

ployed as the spin connection for the non-dynamical vier-
beine fµ

m. The difference between this connection and
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the Levi–Civita spin connection ω(f)µ
m

n of fµ
m yields

the contorsion tensor

Kµ
m

n := ω(e)µ
m

n − ω(f)µ
m

n .

It measures the failure of parallelograms of the dynami-
cal metric to close with respect to the background metric
(and vice versa). For reasons that will later become ap-
parent, it is important to emphasize that flatness of the
background metric does not ensure vanishing contorsion.
In these terms, the vector constraint reads

0 = Cµ = m2Kν
νρfµρ .

In particular, this means that metric derivatives enter
the vector constraint only through the trace of the spin
connection ω(e). However the leading (second) deriva-
tive terms of the scalar curvature R are proportional
to ∂µω(e)ν

νµ. Hence the linear combination of the di-
vergence of the vector constraint and the trace of the
equation of motion quoted in Equation (2) yields the re-
maining scalar constraint C = 0. This ensures that the
model does not propagate spurious ghost degrees of free-
dom and thus evades the generic difficulties associated
with massive gravity theories [2].
For our purposes an explicit evaluation of the scalar

constraint C is needed. For that we first express the scalar
curvature in terms of the contorsion

R = 2∇µKν
νµ

−KµνρK
νρµ

−Kµ
µρKν

ν
ρ

+ eνmeµnR(f)µν
mn ,

where R(f) is the Riemann tensor corresponding to the
vierbeine fµ

m. Observing that the last term on the first
line of the above display is the square of the vector con-
straint − 1

m4 Cµℓ
µνℓνρC

ρ, we have the modified constraint

0 = C −
1

2m2
(C.ℓν)

2

= −
3m4

2
f −

m2

2
eνmeµnR(f)µν

mn +
m2

2
KµνρK

νρµ .

The first term is the familiar FP-trace and the second one
vanishes for flat fµ

m. We will see in the next Section that
the third term has dire consequences for the causality of
the model. It does vanish for special solutions whose
contorsion obeys Kµνρ − Kρνµ = 0; however, imposing
this condition as an additional constraint would remove
further field theoretical degrees of freedom of the model,
an obviously unacceptable tradeoff.

ACAUSALITY

To study the causality of the model we study its char-
acteristics by employing the method first introduced in a
field theoretical context in [13, 17]. This allows us to de-
termine the maximum speed of propagation by studying

a shock whose second derivatives are discontinuous across
its wavefront. Since the model is second order in deriva-
tives, we assume that the dynamical metric gµν and its
first derivatives are continuous across the hypersurface
spanned by the shock’s wavefront by Σ. The inert fµ

m

background is of course continuous. Note that we are
studying causality with respect to the dynamical met-
ric g, not the background, this being a putative theory
of the metric field. (Actually, our conclusions are equally
valid with respect to the background.) Then g, being
smooth across Σ, defines local light-cones which allows
us to decide whether the shock wavefront corresponds to
superluminal propagation.
To start with, we denote the leading discontinuity in

the metric across Σ by square brackets

[

∂α∂βgµν
]

Σ
= ξαξβγµν ,

where ξµ is a vector normal to the characteristic and γµν
is some non-vanishing symmetric tensor defined on the
characteristic surface. Propagation is acausal whenever
the field equations admit characteristics with timelike
normal ξµ, i.e.,

ξµgµνξ
ν < 0 ;

it can be analyzed by studying the field equations and
any combinations of field equations and their derivatives
that are of degree two or less in derivatives on gµν and
so have a well-defined discontinuity across Σ. This, of
course, amounts to studying the discontinuity of Gµν and
the constraints Cµ and C across Σ.
Firstly we consider the anti-symmetric part of the

equation of motion Gµν implying fµν = fνµ. For this we
must compute the discontinuity of the vierbeine. Since
these depend algebraically on the metric we have

[

∂α∂βeµ
m
]

Σ
= ξαξβEµ

m ,

where Eµ
m is some tensor defined on the characteris-

tic surface. Computing the discontinuity of the relation
eµ

mηmneν
n = gµν gives ξαξβ

(

Eµν + Eνµ
)

= ξαξβγµν . At
this point, we proceed by contradiction by taking ξµ time-
like. Without loss of generality, we may therefore set

ξµgµνξ
ν = −1 ,

and thus learn

Eµν + Eνµ = γµν .

A similar computation based on the symmetry of fµν
gives

fµ
ρEνρ = fν

ρEµρ . (3)

Next we compute the leading discontinuity in the field
equation Gµν and in turn its trace G. Since this amounts
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to studying the second derivative terms in these equa-
tions, the result coincides with that of the FP theory
computed long ago in [14, 15] (save that indices are raised
and lowered with the metric gµν):

ξ2γµν − ξµξ.γν − ξνξ.γµ + ξµξν γ = 0 , (4)

ξ2γ − ξ.ξ.γ = 0 .

It is clearly useful to decompose our variables with re-
spect to the (unit) timelike vector ξµ. In particular, for
a vector, symmetric tensor and antisymmetric tensor we
have respectively

Vµ := V ⊥
µ − ξµξ.V ,

Sµν := S⊥
µν− ξµS

⊥
ν − ξν S

⊥
µ + ξµξν ξ.ξ.S ,

(

Sµ := ξ.Sµ

)

,

Aµν := A⊥
µν + ξµA

⊥
ν − ξνA

⊥
µ ,

(

A⊥
µ := Aµνξ

ν
)

.

In this language, Equation (4) implies that γ⊥
µν = 0 so

γµν = −ξµγ
⊥
ν − ξν γ

⊥
µ + ξµξν ξ.ξ.γ . (5)

The next task is to compute the discontinuity in the vec-
tor constraint:

[

ξα∂αCµ
]

Σ
= m2 ξα

[

∂αω(e)ρ
ρσ
]

Σ
fµσ

= −m2
(

Eν
νξσ − E

σνξν
)

fµσ .

Since fµν is assumed invertible, by decomposing

2Eµν = γµν + aµν ,

into its symmetric and antisymmetric parts, we learn

0 = γ⊥
µ + a⊥µ . (6)

Together, Equations (5) and (6) give 2Eµν = a⊥µν −

2ξµγ
⊥
ν + ξµξν ξ.ξ.γ so that Equation (3) becomes

0 = f⊥
µ

ρa⊥νρ+ξµ
(

2f⊥
ν

ργ⊥
ρ −f⊥

ρ a⊥ν
ρ−ξ.ξ.γ f⊥

ν

)

−
(

µ ↔ ν
)

.
(7)

The terms perpendicular and parallel to ξµ must vanish
separately so

f⊥
µ

ρa⊥νρ−f⊥
ν

ρa⊥µρ = 0 = 2f⊥
ν

ργ⊥
ρ −f⊥

ρ a⊥ν
ρ−ξ.ξ.γ f⊥

ν . (8)

The first set of these equations generically gives 3 inde-
pendent linear conditions on as many unknowns (a⊥µν) so

enforces a⊥µν = 0. The second set then gives 3 conditions

on the 4 remaining non-vanishing unknowns, γ⊥
µ and

ξ.ξ.γ. Thus, generically 3 linear combinations of these
vanish, leaving one non-zero linear combination. If this
were to vanish, we would have established the absence of
shock wavefronts Σ with timelike normal ξµ. (Of course,
one still would have to verify the absence of special cases
for the two italicized appearances of “generically” in the
preceding argument, but those are irrelevant in the face
of the generic acausality we are about to exhibit.)

The model is left requiring one more condition on Eµ
m

for its causal consistency. That condition can only derive
from the remaining scalar constraint C, whose disconti-
nuity across Σ we compute next. To begin with, to better
exhibit the problem we are about to find, let us make the
assumption that the background is flat and that the con-
torsion vanishes so that the remaining constraint implies
f = 0 whose discontinuity across Σ implies fµνEµν = 0.
This provides the remaining independent linear relation
between ξ.ξ.γ and γ⊥

µ required to establish that Eµ
m = 0

and in turn the absence of superluminal shocks–so long

as the contorsion vanishes.

However, the contorsion does not vanish as a conse-
quence of the field equations (in fact, as discussed above
this would imply too many conditions on the field theo-
retic degrees of freedom). Thus a proper computation of
the discontinuity of C reads

[

ξα∂α
(

C −
1

2m2
(C.ℓν)

2
)]

Σ
=

m2

2
ξα

[

∂α
(

KµνρK
νρµ

)]

Σ

= −
m2

2
ξνK

µνρEρµ

=
m2

4
ξνK

µνρa⊥µρ .

Thus, instead of a relation involving ξ.ξ.γ and γ⊥
µ , we find

the seemingly additional, but in fact redundant, require-
ment ξνK

µνρa⊥µρ = 0 on a⊥µν . Therefore, since some lin-

ear combination of ξ.ξ.γ and γ⊥
µ does not vanish, timelike

shock normals are allowed. This establishes the promised
presence of acausal characteristics for any choice of back-
ground.

DISCUSSION

We have just shown that one otherwise ghost-free, ac-
ceptable finite range gravity model is excluded. How far
does this no-go result extend to all three possible such
combinations, quite apart from other previously men-
tioned obstacles to these models? Very recently, causality
for models with mass terms quadratic in the f -bein has
been ruled out [8] using methods similar to the present
ones. This leaves only a third candidate mass, cubic
in f . Any model of the form Gµν(g) = Tµν(f, e) with
algebraic T universally yields Equation (5) for the shock;
the structure of the fifth constraint is at the root of the
acausality [24]. Its covariant version for the third mass is
as yet unknown, but if it takes the generic form f3+f2K2

where K is the contorsion, the argument of [8] already
establishes its acausality. Even if it does not, there is po-
tentially a new source of discontinuity, closer to that of
the charged massive spin 3/2 and 2 systems [13–15, 17].
Namely, zeros in the characteristic matrix can allow su-
perluminal characteristics, just as critical values of the
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background E/M field permit superluminal signal prop-
agation in the charged s = (3/2, 2) models. In fact, for
those models, acausality can be traced to non-positivity
of equal time commutators, a fatal physical flaw [18].
We conclude therefore that the acausality we have exhib-
ited is an unavoidable pathology of f -g massive gravity
barring some miracle of the cubic model or some (hith-
erto unknown) underlying “rescue” modification of the
model [25] that also yields a smooth massless limit [26].
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