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We present an approach to the simulation of quantum systems driven by classical stochastic processes that is
based on the polynomial chaos expansion, a well-known technique in the field of uncertainty quantification.
The polynomial chaos expansion represents the system density matrix as a series of orthogonal polynomials in
the principle components of the stochastic process and yields a sparsely coupled hierarchy of linear differential
equations. We provide practical heuristics for truncating this expansion based on results from time-dependent
perturbation theory and demonstrate, via an experimentally relevant one-qubit numerical example, that our
technique can be significantly more computationally efficient than Monte Carlo simulation.

Introduction – Quantitative understanding of the dynamics of
open quantum systems is critically important to many con-
temporary physics experiments [1]. While the equations of
motion for open systems models are often simple to formu-
late, in only a few special cases may they be solved analyti-
cally, and numerical studies are often limited to small systems.
However, when quantum back action can be neglected, i.e., at
high temperature or for short times, fully quantum open sys-
tems may be well approximated by semi-classical stochastic
driving, whereupon the environment interaction operators are
replaced by classical stochastic processes. For example, the
coherence decay of diamond nitrogen-vacancy (NV) centers
in the presence of dilute paramagnetic defects may be mod-
eled very well by assuming that paramagnetic defects in the
lattice produce a classical, fluctuating Overhauser field which
dephases the NV center [2, 3]. Expensive numerical stud-
ies modeling the full quantum environment are then only re-
quired only to determine the statistical properties of this effec-
tive field. The resulting stochastic models are often sufficient
to compute any desired system observables. However, these
reduced models exchange quantum degrees of freedom for
stochastic ones that may also require large, but significantly
reduced, computational overhead. Expectation values of the
system observables may then, in principle, be computed by
averaging over the stochastic degrees of freedom in a man-
ner that is consistent with the statistics of the stochastic pro-
cess. In practice, however, such an average is often difficult
to calculate. Monte Carlo (MC) methods [4] approximate this
average by generating many sample noise trajectories, inte-
grating the Schrödinger equation for each trajectory, and av-
eraging the resulting density operators. However, MC can be
notoriously slow to converge, making it impractical for ap-
plications requiring iterative numerical calculations, such as
optimal control [5, 6]. Perturbative master equations, on the
other hand, are often either computationally inexpensive and
inaccurate, or expensive and accurate, depending on the ap-
proximations made in their derivation [1].

In this work, we present an alternative approach to perform-
ing the stochastic average based on a class of techniques used
widely in classical uncertainty quantification. Known as the
polynomial chaos expansion (PCE) [7, 8], this method lever-
ages properties of orthogonal polynomials to yield a converg-
ing sequence of approximate evolution equations for a quan-

tum system undergoing stochastic driving without resorting
to MC methods. While we restrict our discussion to quantum
systems driven by classical Gaussian stochastic processes, we
make no assumptions of weak coupling nor do we restrict the
form of the noise correlation function. Furthermore, we show
that the linearity of the Schrödinger equation makes quantum
systems particularly well suited to the PCE approach, as the
stochastic dynamics may be expressed in terms of a sparsely-
coupled system of differential equations.

We begin this article with a derivation of Karhunen-Loéve
decomposition, which expresses correlated, classical stochas-
tic processes as an easily truncated sum of deterministic func-
tions weighted by uncorrelated random variables. We pro-
ceed to use this decomposition to derive the PCE as applied
to stochastic quantum systems, yielding a sparsely-coupled
system of Schrödinger-like equations. We conclude with a
discussion and numerical simulation of the convergence prop-
erties of this method, benchmarking our results against Monte
Carlo simulations.

Model – We consider a quantum two-level system coupled lin-
early to a classical stochastic process, Ω, and described by the
Hamiltonian, H(t; Ω(t)) = H0(t) + Ω(t)V . Switching to a
rotating frame with respect to H0, we obtain:

H̃(t; Ω(t)) = Ω(t)U0(t)†V U0 ≡ Ω(t)Ṽ (t), (1)

where U0 = T
←

exp(−i
∫ t

0
H0(s)ds) and T

←
is the Dyson time-

ordering operator. Hamiltonians of this form are quite com-
mon, and restriction to this minimal form simplifies the fol-
lowing derivations. Generalizations to multiple or more com-
plicated dependence on the stochastic process require only
straightforward modifications to the following procedure.

We restrict our discussion here to stochastic processes, Ω,
which are mean-zero, Gaussian, and stationary [9]. By Wick’s
theorem [10], such processes may be completely described
in terms of their two-point correlation functions, C(t1, t2) ≡
〈Ω(t1)Ω(t2)〉Ω. In this article, we use the notation 〈f(Ω(t))〉Ω
to signify the expectation value of the function f with respect
to the process, Ω.

The state of the system when conditioned on a specific re-
alization of the stochastic process, ρ(t; {Ω(t)}), will evolve
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according to the Schrödinger–von Neumann equation:

i
dρ(t; {Ω(t)})

dt
= Ω(t)V (t)×ρ(t; {Ω(t)}), (2)

where we have used the superoperator adjoint notation
A×B = [A,B]. At a time τ , the state of the system, averaged
over the stochastic process, is given by the formal expression

ρ(τ) = 〈U(τ ; {Ω(t)})ρ(0)U(τ ; {Ω(t)})〉Ω , (3)

where U(τ ; {Ω(t)}) denotes the unitary operator generated
by Eq. (2) with a specific realization of Ω. The objective of
this work is to demonstrate that this stochastic average may
be performed in a computationally efficient manner using the
PCE.
Karhunen-Loéve Expansion – If the stochastic process, Ω, is
white, the average in Eq. (3) may be taken locally in time, and
the system dynamics may be described exactly by a Lindblad
master equation [1]. However, the presence of non-vanishing
time correlations greatly complicates the calculation of the
stochastic average. To simplify this calculation, we employ
the Karhunen-Loéve expansion (KLE) [8], which expresses
a continuous, correlated process in terms of a discrete sum
of deterministic functions weighted by uncorrelated random-
variables:

Ω(t) =

∞∑
n=1

√
λngn(t)ξn. (4)

Here, ξn ∈ N (0, 1) are independent and identically dis-
tributed (iid) random variables drawn from a unit-variance,
zero-mean Gaussian distribution, while λn and gn(t) are, re-
spectively, the eigenvalues and L2-orthonormal eigenfunc-
tions of the Fredholm equation [8]:∫ τ

0

C(t1, t2)gn(t2)dt2 = λngn(t1). (5)

Here, the correlation function acts as a symmetric, positive
semi-definite integral kernel, so Mercer’s theorem [8] implies
that the eigenvalues, λn, are discrete and non-negative. Non-
negativity is ensured because the correlation functions of sta-
tionary processes are positive semi-definite (by Bochner’s the-
orem [11]), while discreteness is guaranteed by the finite up-
per limit on the integral, Eq. (5).

Interestingly, when the final time is much greater than the
correlation time of the stochastic process, i.e., τ � τc, the
Wiener-Khinchin theorem [10] implies that the eigenvalue
spectrum becomes continuous and equal to the noise power
spectral density, i.e., λω = S(ω), while the eigenfunctions
take the form gω(t) ∝ cos(ωt). Taken to the extreme white-
noise limit, where τc → 0, all eigenvalues are equal. In the
regime where τ → τc, the correlation function is approxi-
mately constant over the integration window, and the Fred-
holm equation possesses only a single nonzero eigenvalue,
with eigenfunction g1(t) ∝ 1. In this case, the stochastic pro-
cess may be well approximated as a random variable which
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Figure 1. (color online) The eigenvalues, λn (left, gray ×’s); cu-
mulative transition rates, Γn, (left, solid circles); and eigenfunc-
tions, gn(t) (right), of the Fredholm equation, Eq. (5), for Orenstein-
Uhlenbeck noise, where C(t) = exp(− |t| /τc), calculated with fi-
nal time τ = 1 and Hamiltonian H(t) = Bσx + Ω(t)σz . The
top row corresponds to noise correlation time τc = 0.1 and mag-
netic field B = 5, while the bottom row for τc = 10 and magnetic
field B = 20. The stochastic modes with the three largest transition
rates are color coordinated with the eigenfunction plots (in descend-
ing transition rates: red dot and long dashed line; green dot and short
dashed line; blue dot and solid blue line). For long correlation times,
compared to τ , only one mode is dominant, while more modes are
increasingly important for shorter correlation times.

is constant over t ∈ [0, τ ]. Figure 1 illustrates these two lim-
its by plotting the eigensystem of the Fredholm equation for
Orenstein-Uhlenbeck [10] noise with two different decay pa-
rameters.

When the correlation time is relatively long compared to
the evolution time, but not infinite, e.g., when τ < τc, the
expansion Eq. (4) is dominated by only a few terms corre-
sponding to the largest S eigenvalues, and so may be trun-
cated with minimal error. However, truncating the KLE based
only on the eigenvalues ignores the impact that higher fre-
quency modes could have on the dynamics, e.g.,, resonance.
We therefore propose a more physically motivated truncation
criterion based on results from time-dependent perturbation
theory [12]. For static Hamiltonian terms H0 and V in the
Schrödinger picture, the rate at which any given mode, gn(t),
could cause a transition between the jth and kth eigenstates
of H0 is given by

Γjkn =
1

τ

∣∣∣∣〈j |V | k〉∫ τ

0

ei(Ej−Ek)t
√
λngn(t)dt

∣∣∣∣2 , (6)

where H0|j〉 = Ej |j〉. Summing over these eigenstates pro-
vides a measure of the degree to which a given mode will im-
pact the evolution of the system, i.e., the cumulative transition
rate, Γn =

∑
j,k Γjkn . In addition to the eigenvalues, λn, and

eigenfunctions, gn(t), of the Fredholm equation, Eq. (5), cu-
mulative transition rates are also included in Figure 1. Thus,
we approximate the expansion Eq. (4) by keeping only those
modes corresponding to the S largest transition rates, Γn; we
shall refer to S as the stochastic dimension. With this approx-
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imation, Eq. (2) becomes

i
dρ(t; ~ξ)

dt
=

S∑
n=1

√
λngn(t)ξnV (t)×ρ(t; ~ξ). (7)

We emphasize that this truncation strategy differs from that
usually taken in standard uncertainty quantification literature
[8], wherein the truncation is based on the magnitude of the
eigenvalues alone, and without consideration to the potential
impact of a given stochastic mode on the system dynamics.
Expansion in orthogonal polynomials – At the final time, τ ,
the state of the system may be considered as a complicated
function of the S uncorrelated random variables from Eq. (4),
i.e., ρ(τ) = ρ(τ ; ~ξ), as expressed in Eq. (7). As such, we
may expand this function in a complete basis of orthogonal
polynomials, Φn(~ξ):

ρ(t; ~ξ) =

∞∑
n=0

φn(t)Φn(~ξ ), (8)

yielding the (untruncated) PCE. Here, φn(t) are the time-
dependent, operator-valued expansion coefficients that repre-
sent our new dynamical variables. The polynomials should be
orthogonal under the measure, µdξ = exp(−ξ2/2)/

√
2πdξ,

which is derived from the stationary distribution of the ran-
dom variables, which are drawn from N (0, 1). Multivariate
Hermite polynomials are the natural choice:

Φn(~ξ ) =

S∏
j=1

Henj
(ξj),

where we now use the multi-index vector n ∈ ZS>0. This
expansion, Eq. (8), may be truncated, keeping only terms for
which ||n||1 =

∑
j nj ≤ P , where P is the PCE order. Note

that with this truncation the PCE, like general second-order
master equations [1], is no longer guaranteed to preserve the
positivity of the density matrix. However, in practice, we have
seen no violations of positivity, and if negative eigenvalues
were to appear, they could likely be eliminated by moving to
a higher-order expansion. Inserting the truncated expansion
into the evolution equation, Eq. (7), we have

P∑
||k||1=0

i
dφk(t)

dt
Φk(~ξ ) =

S∑
n=1

√
λngn(t)ξnV (t)×

P∑
||l||1=0

φl(t)Φl(~ξ ).

Exploiting the orthogonality of the Hermite polynomials, we
may compute the evolution equation for the coefficients of the
expansion of Eq. (8):

i
dφm(t)

dt
=

S∑
n=1

P∑
||l||1=0

√
λngn(t)V (t)×φl(t)Gmnl, (9)

where we have defined the Galerkin projection:

Gmnl =

〈
Φm(~ξ )ξnΦl(~ξ )

〉
ξ〈

Φm(~ξ)2
〉
ξ

. (10)

These projection terms may be computed explicitly using the
Hermite polynomial orthogonality relations:∫ ∞

−∞
Hen(x)Hem(x)e−x

2/2dx =
√

2πn!δm,n,

and the three term recurrence relation:

ξHen(ξ) = Hen+1(ξ) + nHen−1(ξ).

Taken together, these lead to a much-simplified expression for
the Galerkin projection:

Gmnl = ((mn + 1)δmn+1,ln + δmn−1,ln)
∏
j 6=n

δmj lj

Owing to the presence of the Kronecker delta functions in
the Galerkin projection, the PCE results in a sparsely-coupled
hierarchy of deterministic linear differential equations which
can be solved by standard numerical methods. The choice of
both the stochastic dimension S and the PCE order P deter-
mine the number of equations N in the hierarchy through a
simple combinatorial argument [8]:

N =

P∑
m=0

(
S +m− 1

S − 1

)
=

(S + P )!

S!P !
. (11)

This scaling, known colloquially as the curse of dimension-
ality, limits practical applications to those situations in which
i) the noise correlation time is long, resulting in low stochas-
tic dimension and ii) the noise is weak, so that the PCE con-
verges quickly. More sophisticated truncation procedures may
reduce the hierarchy depth, however, this remains an area of
active research.
Convergence of the PCE – The convergence properties of the
coupled evolution equations, Eq. (9), depend critically on the
distribution of the cumulative transition rates, Γn. Specifi-
cally, noise modes associated with large transition rates will
couple strongly to the system and the PCE must be truncated
at high order in those variables to faithfully represent the sys-
tem dynamics. For example, modes for which Γnτ > 1 will,
on average, induce at least one transition over the course of
the evolution. Accurately capturing these dynamics would re-
quire such modes to be considered at high PCE order.

We consider explicitly the stochastic dynamics of a driven
quantum two-level system, or qubit, coupled to a classically
fluctuating dephasing process:

H(t) = σx + Ω(t)σz, (12)

where σx and σz are Pauli matrices. Such a model describes,
for example, Rabi oscillations in the presence of dephasing
noise [6, 13], and is particularly relevant for NV centers in dia-
mond [2, 3]. Other examples of relevant stochastically-driven
systems include dephasing noise in trapped ions [14, 15]
and 1/f noise in superconducting qubits [16]. In the ab-
sence of the drift term σx, the dephasing dynamics are ex-
actly solvable for any stationary Gaussian process, Ω. How-
ever, when this term is included, the Hamiltonian does not
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Figure 2. (Color online) A comparison of the predicted time-
dependent coherence, 〈σx(t)〉, for the Hamiltonian given in Eq. (12),
with correlation function C(t) = 9 exp(− |t| /10). Solid, colored
lines correspond to a stochastic dimension S = 1, while dashed lines
correspond to S = 3. Grey line is the Monte Carlo result drawn with
width equal to the standard error in the estimate. Because of the long
correlation time, only one eigenvalue of the KLE is dominant, so it
is more efficient to keep the stochastic dimension small and increase
the PCE order.

commute with itself at different times, and the system is no
longer analytically integrable. To illustrate our method, we
choose the stochastic process, Ω, to be Gaussian Orenstein-
Uhlenbeck type [17], with correlation function of the form
C(t) = α2 exp(− |t| /τc); the coupling parameter, α, and the
correlation time, τc, will be specified later. We specify the
initial state of the system as |σ+

x 〉, where σx|σ±x 〉 = ±|σ±x 〉,
and we compute the time-dependent coherence, 〈σx(t)〉. By
tuning the noise correlation time and the coupling parameter,
this model can explore the convergence of our method with
respect to PCE order P and stochastic dimension S.

To benchmark the performance of our PCE approach, we
compare against MC simulations. MC algorithms approach
the problem of computing the stochastic average in Eq. (3)
by generating a sufficiently large number of statistically con-
sistent realizations of the stochastic process, Ω, evolving the
system with each of the realizations, and averaging the final-
time density matrices.

As shown in Fig. 2, our PCE method is capable of repro-
ducing the results of MC simulations with high accuracy, sig-
nificantly faster than MC. For the example chosen, Monte
Carlo required approximately 4000 iterations for convergence,
while the most accurate PCE results report here (P = 9 and
S = 3) required the solution of only 220 coupled equations
and ran approximately 20 times faster than the MC simula-
tion. Note that because τc/τ = 10 in our simulation, only
one eigenvalue of the KLE is dominant. In this regime, it is
more efficient to keep the stochastic dimension small (S ≤ 3)
and increase the PCE order for improved accuracy. As the
order increases from P = 1 to P = 9, the accuracy of the
PCE coherence increases as a function of time, compared to
the converged MC result.
Discussion – Our PCE method demonstrates the ability to

rapidly and accurately propagate stochastic quantum systems.
It outperforms MC simulations in computational efficiency,
and has the potential to become an important tool in the study
of noisy quantum systems. An area in which we expect the
PCE to be particularly useful is in the realm of optimal con-
trol (OC). The high computational cost of MC simulations
severely limits its use in sequential optimal control simula-
tions. However, PCEs can be both accurate and fast, and they
may be easily incorporated as part of a surrogate dynamical
model in OC simulations. In this work, the PCE has been
formulated to propagate a particular state, however, the equa-
tion of motion for the complete dynamical map takes a similar
form and may also be adapted easily to PCE methods. Imple-
mentation of state-to-state and dynamical map OC will appear
in forthcoming work.

An interesting comparison can be made between the PCEs
as presented here and another expansion based on orthogonal
polynomials: Kubo’s hierarchy equations of motion (HEOM)
[18], and their generalization to all diffusive processes, the
DHEOM [19]. Application of the DHEOM/HEOM demands
that the noise be diffusive and have exponentially decaying
correlation function, and proceeds by diagonalizing the noise
generating functional using of orthogonal polynomials [19].
Interestingly, though the HEOM and PCE approaches each
yields a sparsely-coupled hierarchy of differential equations
based on expansions in orthogonal polynomials, they perform
well in exactly opposite limits: the HEOM method converges
quickly for noise with a short correlation time, while the
stochastic dimension of our PCE method converges quickly
for noise with a long correlation time. For systems coupled to
multiple, uncorrelated noise sources, it may be computation-
ally advantageous to apply different methods for each source:
HEOM for noise with short correlation times, PCEs for noise
with long correlation times.

Additionally, we have assumed a linear coupling between
the system and the stochastic process in Eq. (1). While such a
coupling is common [20], nonlinear interactions are possible,
which may increase the coupling density of the differential
equations in Eq. (8) by modifying the form of the Galerkin
projection of Eq. (10). Strongly nonlinear interactions will
yield densely coupled systems of equations, which will in-
crease the computational cost of this method.

Despite the obvious utility of our PCE approach for sim-
ulating stochastic quantum systems, it does have limitations.
Principal among these is the uncontrolled approximation of
the stochastic average, so that the error must be estimated
by increasing the PCE order and/or the stochastic dimension
of the expansion until convergence is seen. Furthermore, as
indicated in Eq. (11), the number of equations to be solved
grows combinatorially with both the stochastic dimension and
the PCE order; when these are large, the method of Galerkin
projections becomes computationally infeasibile. Intermedi-
ate between MC and the PCE approach presented here is a
non-intrusive formulation of the PCE, so called because its
implementation requires only a forward solver for the equa-
tions of motion, while the intrusive method presented here re-
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quires an explicit solver to propagate the coupled equations
resulting from the Galerkin projections. Non-intrusive spec-
tral methods approximate the stochastic average of Eq. (3) by
performing a KLE, and using sparse quadrature techniques to
perform the average. We plan to implement such techniques
in the near future.
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