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1Département de Physique, de Génie Physique, et d’Optique,
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While disease propagation is a main focus of network science, its coevolution with treatment has yet to be
studied in this framework. We present mean-field and stochastic analysis of an epidemic model with antiviral
administration and resistance development. We show how this model maps to a coevolutive competition between
site and bond percolation featuring hysteresis and both second and first-order phase transitions. The latter,
whose existence on networks is a long-standing question, imply that a microscopic change in infection rate can
lead to macroscopic jumps in expected epidemic size.

With the recent focus of public health policies on planning
the control of the next influenza pandemic [1], more complex
models have been introduced in epidemiology [2, 3]. We ex-
tend on one of these studies [2] where treatment of influenza,
as a selection pressure, favors the emergence and spread of
pathogen strains with a drug-resistant phenotype. However,
very similar adaptation dynamics could also be considered in
the interactions of pathogens through ecological mechanisms
[4], or of adaptive computer viruses [5, 6] and for behavioral
changes in a population [7, 8] or ecosystem [9]. While we
study a mutation dynamics, the terms adaptation and coevolu-
tion are not used as biological concepts, but simply in refer-
ence to dynamics where two variables influence one another.

Our model consists of a contact network where each indi-
viduals can be in one of five states: susceptible (S ), infectious
and untreated (Iu), infectious and treated (It), infectious with a
resistant strain (Ir), or recovered (R). The dynamics then obey
the following rules:

• a link from Ix to S leads to an infection at rate βx (x ∈
{u, t, r});

• a wild strain infection (through Iu or It) is untreated
(S → Iu) with probability 1 − ρ, or treated with proba-
bility ρ;

• treatment is effective (S → It) with probability 1− c, or
leads to mutation (S → Ir) with probability c;

• a resistant strain infection (through Ir) can only transmit
this strain (S → Ir);

• infectious individuals of type Ix recover at rate γx.

Once all infectious individuals have recovered, the final epi-
demic size is calculated.

Mean-field analysis. One of the benefits of network mod-
eling resides in the possibility to account for heterogeneity in
the contact structure of a population. Hence, we consider both
delta and fat-tailed distributions of links per node (or degree
distribution), to create homogeneous and heterogeneous net-
works. The distributions are detailed in the Supplemental Ma-
terial (SM). However, to accurately follow such heterogeneity

in a mean-field analysis, one must distinguish nodes not only
by their states, but also by their degree [6]. For instance, the
mean fraction of susceptible nodes of degree k at time t, S k(t)
can be written as:

Ṡ k = −k
(
βu〈Iu〉 + βt〈It〉 + βr〈Ir〉

)
S k (1)

where 〈Ix〉 is the probability that a randomly chosen link of
a susceptible node leads to an infectious individual of type x.
Note that all time dependency are implicit. Similarly for other
node states, we can deduce:

İu,k = k
(
βu〈Iu〉 + βt〈It〉

)
(1 − ρ)S k − γuIu,k (2)

İt,k = k
(
βu〈Iu〉 + βt〈It〉

)
ρ(1 − c)S k − γtIt,k (3)

İr,k = k
(
βu〈Iu〉 + βt〈It〉

)
ρcS k + kβr〈Ir〉S k − γrIr,k (4)

Ṙ =
∑

k

γuIu,k + γtIt,k + γrIr,k . (5)

We must be careful in evaluating the mean-field quantities 〈Ix〉

as a susceptible is less likely to be connected to an infectious
node than, for example, a recently infected node. To account
for such correlations [10], we follow the density of each pos-
sible link attached to at least one susceptible node (denoted
[S X]):

˙[S S ] = −2
(
βu〈Iu〉 + βt〈It〉 + βr〈Ir〉

)
〈k′s〉[S S ] (6)

˙[S Iu] = −
[(
βu〈Iu〉+βt〈It〉+βr〈Ir〉

)
〈k′s〉+βu+γu

]
[S Iu]

+ 2
(
βu〈Iu〉+βt〈It〉

)
〈k′s〉(1 − ρ)[S S ] (7)

˙[S It] = −
[(
βu〈Iu〉+βt〈It〉+βr〈Ir〉

)
〈k′s〉+βt+γt

]
[S It]

+ 2
(
βu〈Iu〉+βt〈It〉

)
〈k′s〉ρ(1 − c)[S S ] (8)

˙[S Ir] = −
[(
βu〈Iu〉+βt〈It〉+βr〈Ir〉

)
〈k′s〉+βr+γr

]
[S Ir]

+ 2
(
βu〈Iu〉+βt〈It〉

)
〈k′s〉ρc[S S ] + 2βr〈Ir〉〈k′s〉[S S ] (9)

˙[S R] = −
(
βu〈Iu〉 + βt〈It〉 + βr〈Ir〉

)
〈k′s〉[S R]

+ γu[S Iu] + γt[S It] + γr[S Ir] (10)
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FIG. 1. (Color online) Competitive co-evolution between site and
bond percolation. The percolative process of an [S Iu] link is de-
signed to be equivalent to the continuous time dynamics; 1. indicates
the initial state; 2. bond percolation, formation of links (infection)
with probability Tu; 3. three-state site percolation for treatment (to
untreated, treated or mutated). Events involving It nodes use bond
percolation with transmissibility Tt followed by site percolation as
illustrated here, whereas events involving Ir use solely bond percola-
tion with probability Tr (no possible treatment, hence no site perco-
lation).

where 〈k′s〉 is the average excess degree of susceptible nodes.
Equations (1-10) represent the minimal set of equations re-
quired to describe the system at all time, in the sense that
they are sufficient to calculate all the mean-field quantities on
which they depend. A simple averaging procedure yields:

〈k′s〉 =
∑

k k(k − 1)S k∑
k kS k

(11)

〈Ix〉 =
[S Ix]

2[S S ] + [S Iu] + [S It] + [S Ir] + [S R]
. (12)

Integrating this system of equation provides mean-field pre-
dictions (i.e. in the infinite limit) for the final size of epi-
demics.

Mapping to percolation. Most SIR models feature an ir-
reversible timeline. For our model, there are only four pos-
sible scenarios for each node: S → Iu → R, S → It → R,
S → Ir → R, or S for all time, and thus none of these scenar-
ios can be traveled in reverse. This implies that the considered
continuous time model can be mapped unto a percolation pro-
cess [11–13], or more precisely, a coevolutive competition
arises between site and bond percolation. The bond perco-
lation represents the propagation of the disease under certain
assumptions [14, 15], see SM for details, while the site perco-
lation represents both treatment and mutation (Figure 1). As
we will see, these dynamics are both coevolutive (the disease
mutates to adapt and resist treatment) and competitive (treat-
ment aims to stop bond percolation, and the two strains can
hinder each other’s propagation). The details of this particular
process are illustrated in Figure 1.

The different percolation probabilities involved can be eas-
ily evaluated. In fact, treatment and mutation are already mod-
eled as site percolation in the original dynamics. Infection
events on an [S Ix] link are equivalent to a bond percolation

process where infection occurs with a given probability Tx,
i.e. that the infection event precedes the recovery event (proof
in SM):

Tx =
βx

βx + γx
. (13)

Also note that while the infections map to classic boolean
bond percolation, the treatment process maps to site perco-
lation with three possible states (if 0 < ρ < 1) akin to the
3-states Potts model [16].

Finally, while resistance will always emerge under mean-
field assumption, one can account for this by approximating
the probability of emergence of the resistant strain through the
probability of treatment causing at least one mutation. The
expected number of infections caused by a single infectious
individual from a disease under its epidemic threshold, 〈n〉, is
a well-known result of network epidemiology [11] and can be
used to calculate the probability P of emergence of resistance.
In 〈n〉 infections, resistance develops only if at least one leads
to a failed treatment (probability ρc):

P = 1 − (1 − ρc)〈n〉 = 1 − (1 − ρc)T 〈k〉/(1−T 〈k′〉) (14)

where 〈k〉 and 〈k′〉 are the mean degree and excess degree of
the network, respectively, and T is the effective transmissi-
bility of the treated wild-strain. A more complete analysis is
given in the SM.

Phase transition. Our model can lead to four possible fi-
nal states: a disease-free state, epidemics caused by either the
wild strain (c = 0), the resistant strain (c > 0), or a combi-
nation of both (if above their respective threshold). In stan-
dard epidemic and percolation models, the transition from the
disease-free equilibrium to an epidemic is observed by keep-
ing all parameters constant and progressively raising the trans-
missibility. Once the epidemic threshold is achieved, the dis-
ease is able to spread to an increasingly larger macroscopic
fraction of the network [11].

To highlight certain features, we consider the case βr > βu

– corresponding biologically to the development of compen-
satory mutations in the pathogen in response to the fitness cost
typically associated with treatment resistance [17, 18] – and
set γu = γt = γr = γ for simplicity. We note that while com-
pensatory mutations are rare, the selective pressures exerted
by treatment can still give a large advantage to uncompensated
resistant strains. In fact, our results are qualitatively similar
with or without these mutations as long as the resistant-strain
epidemic undergoes a phase transition before the treated wild-
type strain (βr > βt).

The phase transition from the disease free state to the
epidemic state, dominated mostly by the resistant strain, is
demonstrated in Figure 2. The main feature is the explosive
transition, where the observed maximal epidemic size jumps
suddenly from zero to almost 10%. While the transition is
technically of the second-order (i.e. continuous) the probabil-
ity of resistance emergence falls to zero when βu diminishes
such that some epidemic sizes are practically impossible to
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FIG. 2. (Color online) Explosive phase transition. Emergence of
the giant component (i.e. of epidemics) as infection rates increase.
The results for over 106 simulations of the percolation process on fat-
tailed networks with 2.5× 105 nodes are plotted (points). Point color
represents the proportion of cases landing on either branch (lighter =
less likely, darker = more likely). This coloring highlights the sec-
ond transition, or invasive threshold, which marks the end of bista-
bility. Analytical curves are obtained by integrating our equations
with (c > 0) and without (c = 0) mutation for upper and lower
branches respectively. The color code of the upper branch corre-
sponds to log P (log of the probability of resistance emergence) and
encodes the probability of reaching that branch: likely in color, un-
likely in white.

observe. In fact, in the case of extremely rare mutations (i.e.
c → 0), even the infinite system will feature a discontinuous
jump as the probability of mutation becomes a step function
(see Fig. 3). The system thus features a first-order phase tran-
sition in the limit of rare mutations.

This is of great interest for research in percolation pro-
cesses as discontinuous phase transition in percolation mod-
els on networks have been claimed before [19, 20], but dis-
proven [21]. We show here for the first time that these tran-
sitions can actually occur on a general network structure, as
opposed to fractal networks [22]. While the mechanisms po-
tentially leading to such transitions in percolation on networks
are generally not well understood [20], the discontinuity in
our biologically-inspired model can be explained by a classic
phase transition concept. In short, a first-order (or explosive)
phase transition is achieved because the resistant strain must
wait for the wild strain to spread and then for treatment to al-
low resistance to spread throughout the system. While this is
the most likely outcome above the threshold of the wild strain,
this scenario is almost impossible for smaller infection rates.
If more transmissible than the treated wild strain, the resis-
tant strain then contains an “infection potential”, conceptually
equivalent to latent heat in classical phase transition theory,
resulting in a discontinuity at transition.

Bistable and competitive regimes. For c > 0, there exists
a regime of bistability where a given disease can either stay
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FIG. 3. (Color online) From continuous to discontinuous epi-
demics. (A) Eq. (14) for the probability of resistance emergence
for various mutation probability c. As c goes to zero, the transition at
threshold converges toward a step function leading to a discontinu-
ity in possible epidemic size. (B) Probability of reaching a resistant
strain epidemic as a function of infection rate βu for various mutation
probabilities c in simulations. Notice how Eq. (14) correctly predicts
that probabilities below the treated-disease threshold (dotted line) are
more affected by variations in c than for above the threshold. (C) Ef-
fect of population size N on the probability of reaching a resistant
strain epidemic. Scenarios above threshold feature macroscopic epi-
demics (fractions of N) of the wild strain and are thus significantly
more affected by population size than those below thresholds where
epidemics are microscopic (independent of N); also as predicted by
Eq. (14). (D) Combining these behaviors for c→ 0 and N → ∞, we
can expect that a very effective treatment in a very large populations
will feature a discontinuity in observed or expected total epidemic
size (as shown solid red line). Other simulation parameters are set to
the value of Fig. 2.

in the disease-free state or reach the epidemic stable branch
(hysteresis). Interestingly, when integrating our mean-field
analysis with a finite precision, there exists a critical mani-
fold (roughly P ∼ precision) marking a limit above which ini-
tial conditions escape the disease-free state towards the epi-
demic state. The analytical observation of the bistability was
thus achieved by using different initial conditions (all < 10−5).
Though our finite simulations start with a single infectious in-
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FIG. 4. (Color online) Importance of state correlations and het-
erogeneity. Using the uniform network (i.e. pk = δk,4), we see a very
similar phase transition. For comparison, the dotted line corresponds
to the prediction of classic epidemiological models, neglecting state
correlations, as used in the original study of the present model [2].
Results of over 2×106 simulations on networks with 2.5×105 nodes
are plotted, and both points and lines use the same color scheme as
Fig. 2. The lower branch of our model, corresponding to epidemics
of treated wild strain, is barely visited above its threshold (at βu ≈ γu)
as the upper branch is by far the most likely outcome at this point.

dividual, they can stochastically tunnel through this manifold
and reach the epidemic state. Figures 2 and 4 color the sim-
ulation results to illustrate the likelihood of such events for
each transmissibility (points). As transmission rates increase,
the system features a second phase transition corresponding to
the epidemic threshold of the case without mutation (c = 0),
after which all epidemics reach the highest branch (see Fig. 3).

This final regime also differs from regular percolation, as
both strains end up competing for the potential infections.
That is, if the wild strain spreads to high degree nodes early
on, the system is less easily invaded by the resistant strain. To
illustrate this competition for high degree nodes, consider the
narrower spread of results on the uniform network of Fig. 4
as opposed to the large competitive regime observed on the
heterogeneous network of Fig. 2. Within this competitive
regime, the dynamics become highly sensitive to initial con-
ditions. Although the different strains compete for the highest
degree node even in the limit of an infinite population (i.e. the
analytical system), this competition and sensitivity is always
stronger in a finite system. In the limit of rare mutations and
large infection rates, our model is akin to previous models of
competing epidemics [23, 24].

Finally, note that these results are valid as long as the re-
sistant strain propagates faster than the treated wild strain, i.e.
βr > (1−ρ)βu+ρ(1−c)βt which is likely in practice according
to realistic estimates [2]. Otherwise, the dynamics still feature
competition, but lacks both bistability and the explosive phase
transition as the disease never accumulates infection potential.

Discussion. In light of recent studies in first-order tran-
sition in percolation on networks, our simple biologically-
inspired model of coevolutive competition provides deep in-
sight into how discontinuous transitions can emerge in such
systems: due to the build up of potential connectivity (la-
tent heat) from coevolution. Similar results had previously
been observed on adaptive networks whose structure changes
through time [25] and in jamming transitions for network
with traffic awareness where routing protocols depends on the
network’s state [26]. This arguably hints at a new universality
class corresponding to coevolutive dynamics on networks.

Our results also have important implications for the con-
trol of epidemics in finite structured populations. Due to the
presence of bistability and hysteresis, treatment effectiveness
depends highly on the initial conditions [35]. This is espe-
cially important given the relative ease of many pathogens to
evolve resistance to treatment [27–31] and the potential mor-
bidity and mortality associated with treatment failure (for ex-
ample, neuraminidase inhibitors oseltamivir and zanamivir for
the treatment of influenza) [2, 32–34]. In that optic, future
work will study the implications of resistance development for
the optimal targeting, timing and scale of treatment strategies.
Finally and most importantly, the first-order phase transition
indicates that a microscopic change in transmission rate can
lead to a severe macroscopic jump in the expected epidemic
size. It is thus primordial that future efforts focus not only on
reducing mutation probability in treatment, but also on detect-
ing and controlling the emergence of resistance.
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