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The emergent gauge field characteristic of the Coulomb phase of spin ice betrays its existence via
pinch points in the spin structure factor S in reciprocal space which takes the form of a transverse
projector P at low temperature: S(q) ∼ P ∼ q2⊥/q2. We develop a theory which establishes the fate
of the pinch points at low and high temperature, for hard and soft spins, for short- and long-ranged
(dipolar) interactions, as well as in the presence of disorder. We find that their detailed shape can
be used to read off the relative sizes of entropic and magnetic Coulomb interactions of monopoles
in spin ice, and we resolve the question why pinch points have been experimentally observed for
Ho1.7Y0.3Ti2O7 even at high temperature in the presence of strong disorder.

PACS numbers: 75.10.Jm 05.30.Jp 71.27.+a

Motivation: The study of ‘topological’ states of mat-
ter has been one of the central enterprises of condensed
matter physics over the years, encompassing as they do
fractional quantum Hall states, spin liquids or topological
insulators. They are distinct from conventional phases
exhibiting local order – e.g. a ferromagnet or charge-
density wave – but also from simple disordered phases.
The central experimental challenge is to diagnose their

existence in more than a negative way, such as the ab-
sence of order. Especially for states with mobile charged
excitations, non-local probes such as conductivity1 or
interferometry2 have been used to detect edge states
or fractionalised excitations; in their absence, diagnos-
tics have often resorted to general thermodynamic argu-
ments, like the presence of power laws in thermodynamic
quantities3, which while highly suggestive have no direct
link to the nature of the effective degrees of freedom.
Spin ice, a three-dimensional frustrated magnetic ma-

terial on the pyrochlore lattice made of corner-sharing
tetrahedra, exhibits a topological Coulomb phase4. A
pinch-point motif in the spin structure factor (Fig 1(a))
has been identified as a diagnostic of the emergent gauge
field characteristic of that phase, and analysed in consid-
erable detail5–11. It emerges as a consequence of a local
constraint, the “ice rule”, imposed by the interactions,
that each tetrahedron have vanishing total (pseudo-)spin
S4 =

∑

i∈4
Si = 09,10,12. Excited tetrahedra violating

this constraint carry an emergent gauge charge9,10,13–15

and interact through both an entropic and a magnetic
(energetic)15,16 Coulomb interaction.
It turns out that the pinch points persist to regimes far

away from the Coulomb phase, most strikingly to high
temperatures17 even in the presence of strong dilution
of the magnetic Holmium ions by non-magnetic Yttrium
ions18. This calls for a theory determining under which
conditions pinch points provide what information.
We hence devise a theory for the structure factor across

a range of settings (temperature, nature of spin, range
of interaction, level of disorder) and find that they en-
code much useful and interesting information. A com-
bined analysis of the correlations along the two axes of
the pinch point which we call nodal10 and antinodal (see

Fig 1) reveals this information, in particular the disconti-
nuity where they cross at the pinch point itself, as well as
the nature of the vanishing of the nodal correlators, the
importance of which has been emphasized by Henley15

and Bramwell19. We find the possibility of qualitatively
distinct correlation functions for gauge charges and spin
correlators: the latter are enhanced, while the former
are screened, as long-ranged interactions are introduced.
The qualitative enhancement is weakened, but does not
disappear, at high temperature, even in the presence of
disorder; while at low T , one can read off the relative size
of entropic and magnetic charges.
Our analysis thus contributes not only to the study of

diagnostics of topological phases, as well as their inter-
play of disorder, but also has connections to the unusual
correlations induced by dipolar interactions, which are
also of much current interest in the study of cold atoms20.
The core of our analysis consists of a formulation of

the large-n expression for correlations of the soft-spin
model9 in terms of quantities natural to the emergent
gauge degrees of freedom, which then straightforwardly
generalises to the other settings. This may be of more
general methodological interest. Here it provides an at-
tractively simple yet complete picture in terms of (un-
usual forms of) Debye screening.
The analysis starts from the Hamiltonian5

H =
∑

(ij)

HijSiSj =
J

3

∑

(ij)

SiVijSj

+ Da3
∑

(ij)

(

êi · êj
|rij |3

− 3(êi · rij)(êj · rij)
|rij |5

)

SiSj (1)

where (ij) denotes the sum over pairs of spins, J
3 and D

parametrise the strengths of nearest-neighbour exchange
and dipolar interactions, respectively and Vij = Γij+δij ,
where Γ is the adjacency matrix of the pyrochlore lattice.
We will also have occasion to consider an ‘ideal’ dipolar
interaction, which differs from Eq. 1 only by terms van-
ishing as O(r−5

ij ) with distance, the matrix form of which
corresponds to the projector P onto the ground states of
the ice model17.
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FIG. 1. (a) S̃(q) (see Eq 5) calculated in the [hhk] plane for

the ice states at T = 0 (b) S̃(q) calculated for Ho2−xYxTi2O7

at T = 10 K and x = 0.3 (c) Diffuse scattering along nodal
direction (dotted line in (a) and (b)) and perpendicular to it
(antinodal direction, bold line in (a) and (b)) for both the
cases near the pinch point (0, 0, 4π). q is measured relative
to the pinch point. Note the weak pinch point discontinu-
ity (indicated by arrows) even at high T and disorder. (d)
Experimentally observed diffuse scattering from Ref 18 for
Ho2−xYxTi2O7 at T = 10 K and x = 0.3. In the three dif-
fuse scattering plots, qx ∈ [−4π, 4π] and qz ∈ [−6π, 6π] and
measured in units of a−1

cubic
.

The pyrochlore lattice is made of up and down tetra-
hedra labelled by η = ±1, each up tetrahedron meeting
down tetrahedra at its four vertices and vice-versa. It
can be viewed as a fcc Bravais lattice with an up tetra-
hedron (four-site basis) at each fcc site. The unit cell

is then a conventional cubic cell of side acubic = 2
√
2a,

where a is the nearest neighbour distance. Si are (hard
or soft) spin variables pointing along local easy axes êα in
the α = 1 . . . 4 [111] directions pointing from the centers
of the up tetrahedra to the vertices. The centers of all
tetrahedra form a bipartite diamond lattice with bond
length ad =

√
3acubic/4.

Nearest-neighbour soft spins: The large-n approach21

works demonstrably well for the nearest-neighbor (NN)
Heisenberg (n = 3) model at low T 9,10,22, and for the
Ising (n = 1) model at T = 09. The solution requires the
eigenvalues and eigenvectors of Vij . In momentum space,

V (q) =







2 2cyz 2cxz 2cxy
2cyz 2 2cxy 2cxz
2cxz 2cxy 2 2cyz
2cxy 2cxz 2cyz 2







where cab = cos
(

qa+qb
4

)

and cab = cos
(

qa−qb
4

)

. Its spec-

trum consists of four bands vµ(q) = 0, 0, 4 ∓ 2
√
1 + Υ

with Υ = c2xy + c2xy + c2yz + c2yz + c2xz + c2xz − 3.
There are thus two flat bands at zero energy and two

bands (one gapless, quadratic acoustic and one optical)
with energies ṽ3,4(q) = (J/3)v3,4(q) for the NN model

(D = 0). The eigenvectors in the flat bands satisfy the ice
rules, i.e. the sum of spins on each tetrahedron vanishes.
The spin correlations are expressed in the diagonal ba-

sis of V (q) using a unitary transformation U(q). Then,
〈Sα(q)Sβ(−q)〉 equals:

2
∑

µ=1

Uαµ(q)U
†
µβ(q)

λ(T )
+

4
∑

µ=3

Uαµ(q)U
†
µβ(q)

(

T

ṽµ(q) + λ(T )T

)

=

2
∑

µ=1

UαµU
†
µβ

λ(T )
+

4
∑

µ=3

UαµU
†
µβ

(

Q2

vµ(q) +
a2

cubic
κ2

8

)

(2)

where the q dependence of U is suppressed for brevity in
the second line in Eq 2. The length constraint 〈S2

i 〉 = 1/n
per component is imposed by the Lagrange multiplier
λ(T ).
The re-writing in the second line in Eq 2, (Q2 =

T/(J/3), a2cubicκ
2 = 8λ(T )T/(J/3)), will help us inter-

pret results at finite T in terms of (gauge) charges S4 6=
0. κ−1 equals the charge-charge correlation (screening)
length. This can be seen by calculating 〈S4(0)S4(r)〉.
For r ≫ a, this equals:

〈S4(0)S4(r)〉 ∼ −η0ηr
Q2a2cubicκ

2

4π

exp(−rκ)

r/acubic
. (3)

Note that the charge-charge correlation function is
isotropic in space unlike the spin-spin9 correlation func-
tion. Also, when the screening length is large, i.e.
acubicκ → 0, the charge density 〈S2

4
〉 approaches the

“bare” value Q2 and λ → n
2 (1 + 0.22411Q2n).

From Eq 2, we can also calculate the structure factor
S(q) = 〈∑4

α=1 Sα(q)
∑4

β=1 Sβ(−q)〉. Its pinch points at

T = 0 are due to the singularities in the U(q) matrix21.
Concentrating on small (qx, qx, qz) near the pinch point
at (0, 0, 4π) for clarity, S(q) can be written as:

4q2x
q2x + q2z

(

1

λ(T )

)

+
4q2z

q2x + q2z

(

Q2

v3(q) +
a2

cubic
κ2

8

)

(4)

where we omit the contribution of the gapped optical
branch, which is fully analytic.
At T = 0, only the flat bands contribute, leading to

pinch points. Moreover, when qx = 0, the structure fac-
tor is precisely zero near the pinch point. At finite T ,
there is non-zero diffuse scattering in this nodal direc-
tion10, proportional to Q2, the width of which is con-
trolled by acubicκ, the inverse screening length. In the
perpendicular antinodal direction, the scattering arises
from the flat band states and is present even at T = 0
(Fig 1(c)). The discontinuity in S(q) is washed out
at finite T and the structure factor is analytic at the
pinch point. In real space, spin correlations now de-
cay exponentially with a correlation length ξ/acubic =
1
2

√

(J/3)/nT at low T . Thus, the spin correlations and
the charge correlation decay with the same correlation
length in the NN case.
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The charge correlations at low T can be understood
as Debye-Hückel (DH) screening23 of charges S4. Un-
usually, their size is not “quantised” (because of the
continuous nature of the soft spins) and their Coulomb
interaction is entropic. The charges effectively live on
the dual diamond lattice sites which are the centers of
the tetrahedra of the pyrochlore lattice. The varying
number of spin configurations consistent with a given
charge configuration leads to the entropic Coulomb in-
teraction Kad

∑

i,j QiQj/rij where K = nT/(2
√
3π) and

Qi = ηi(S4)i. The screening length equals a2cubicξ
−2
DH =

(8
√
3πKρ〈Q2〉)/T within standard DH theory. For soft

spins, each tetrahedron hosts a charge of mean size
Q at low T : indeed, setting ρ〈Q2〉 = T/(J/3) gives
ξDH = κ−1.
Nearest-neighbour (hard) Ising spins: Ising spins can-

not simply be described in terms of modes with eigenval-
ues ṽµ(q) because the unit length constraint couples the
modes non-linearly. However, the rewritten form, Eq. 2,
does generalise straightforwardly in the sense of an effec-
tive theory. The low-T properties of spin ice can be de-
scribed in terms of a dilute set of mobile, Coulombically
interacting charges on the dual diamond lattice. The cru-
cial difference to soft spins is that now these charges are
quantised, and hence gapped. The parameters Q2 and
acubicκ are fixed by the properties of these interacting
charges, while the Lagrange multiplier λ(T ) enforces the
spin length constraint on average. Note that vµ(q) are
the eigenvalues of the Laplacian operator Γij − zδij on
the pyrochlore lattice, where z is the coordination num-
ber, (with a further shift of 8δij to make the eigenvalues
positive-definite) which turns into ∇2 in continuum.
We first consider the NN Ising model. At low T , the

(exponential) majority of defects have S4 = ±2 so that
S4 = ±4 may safely be ignored. The fraction of defective
tetrahedra ρ is itself exponentially suppressed and equals
2 exp(−2J/3T ). Since 〈S2

4
〉 = 4ρ, this fixes Q2 = 4ρ.

The Lagrange multiplier λ(T = 0) = 1/2 since n = 1
for Ising spins. The weight in the flat bands decreases
according to Q2 at finite T , which we take into account
by λ(T ) = 1/2 + α(T )ρ. Specifying Q2 and λ(T ) fixes
the inverse screening length a2cubicκ

2
e = 16ρ + 32α(T )ρ2

for the NN Ising model as we require the pinch points to
vanish at any T 6= 0. α(T ) can be determined numeri-
cally from the unit-length constraint and equals 0.44822
as T → 0. The leading term in a2cubicκ

2
e exactly repro-

duces the entropic screening length calculated in Ref 24
using DH theory where the gapped charges (Q = ±2) in-
teract with an entropic Coulomb interaction of strength
K = T/2

√
3π.

The pinch points now acquire a finite width in q space,
determined by acubicκe, of order |q| ∼ √

ρ for Ising

spins15,19 (see Figs 2(a),(d)) instead of ∼
√

T/J for soft
spins. This width can be observed in the half-width at
half maximum (HWHM) of the diffuse scattering along
the pinch point’s nodal direction. In spin ice, the Ising
spins point along the easy-axes and thus, the experimen-
tally relevant structure factor S̃(q) has additional phase

factors,6 and equals

∑

α,β

〈Sα(q)Sβ(−q)〉
(

êα · (ê|| × q)

|ê|| × q|
êβ · (ê|| × q)

|ê|| × q|

)

(5)

where ê|| = 1√
2
(1,−1, 0) and q lies in the [hhk] plane.

We display S̃(q) in the discussions of diffuse scattering
rather than S(q). Note that in three dimensions, the DH
screening length ρ−1/2 scales differently from the average
distance between the thermal defects, ∼ ρ−1/3. As in
the soft spin case, the NN Ising case also has both the
spin-spin correlations and the charge-charge correlations
decaying with the same correlation length ∼ ρ−1/2 at
finite (low) T .
Dipolar spin ice: We now turn to dipolar spin ice

where long-ranged interactions between the spins, D 6= 0,
play an important role. Due to the dipolar interactions,
the charges S4 6= 0 now have an additional magnetic
Coulomb interaction.16 This can be conveniently seen
by using the dumbbell model16 where each spin (point
dipole) is replaced by an extended dipole of size ad placed
on each bond of the dual diamond lattice. Then, up to
correction terms that decay as O(1/r5ij) for large rij , the
interactions in Eq 1 can be re-written as

Hd =
2
√
2

3
√
3
Dad

∑

i>j

QiQj

rij
+∆

∑

i

(Qi/2)
2 (6)

where ∆ = 2J
3 + 8

3

(

1 +
√

2
3

)

D.

Thus, the charges interact with both an entropic and a
magnetic Coulomb interaction and the total coupling is
K = T/(2

√
3π)+2

√
2D/(3

√
3). The magnetic Coulombic

DH screening length equals a2cubicκ
2
M = 64

√
2π

3T ρD. Here,

ρ needs to be calculated self-consistently24 and equals
2 exp(−∆/T ) as T → 0. Thus, the fraction of defective
tetrahedra now depends on both J and D.
The parameters of the generalized equation are now

Q2 = 4ρ, λ(T ) = 1/2 + α(T )ρ and κ2 = κ2
e + κ2

M where
α(T ) is determined from the unit length constraint. The
parameters go smoothly to the NN Ising values when
J ≫ D. The charge-charge correlators calculated from
this generalized equation have the correct DH form when
both interactions are present.
Screening is now enhanced as the magnetic Coulomb

interaction does not vanish with T . The contribution
of the acoustic band is then suppressed by O(T/D) for
wave-vectors |q| ≪ κM near the pinch point as T → 0,
because ρ/κ2

M ∼ T/D. Thus, the pinch points sur-
vive but are weakened. More specifically, the disconti-
nuity at the pinch points, when approaching from the
nodal and the antinodal directions respectively, scales as
1− (1 + 4

√
2πD/3T )−1 at low T . Secondly, the HWHM

for the scattering in the nodal direction at the pinch point

scales as
√

(1 + 4
√
2πD/3T )

√
ρ. Both the discontinuity

at the pinch point and the HWHM in the nodal direction
show that the gauge charges interact both energetically
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FIG. 2. (a) S̃(q) calculated along the nodal line near the pinch
point (0, 0, 4π) for both the NN Ising model and dipolar spin
ice (using HTO parameters). q is measured relative to the
pinch point. The dotted line shows the scattering for the NN
Ising model using the value of ρ obtained at T = 0.65 K with
HTO parameters. The dotted line meets the antinodal line
(≈ 2.66) at q = 0.(b) “Correlation length” ξ defined using
the HWHM of the diffuse scattering calculated using HTO
parameters (black points) in the nodal direction. Red points
show the corresponding NN Ising result using the ρ obtained
with HTO parameters. (c) S̃(q) near the pinch point (0, 0, 4π)
in the [hhk] plane for HTO parameters at T = 0.65 K. Note

the discontinuity even at finite T . (d) S̃(q) calculated using
the same ρ in the NN Ising case. The discontinuity is rounded
off. Farther away from the pinch points, (c) and (d) agree. In
both the scattering plots, qx/2π ∈ [−0.05,+0.05] and qz/2π ∈

[1.95, 2.05].

and entropically: (4
√
2πD)/(3T ), the ratio of the mag-

netic and the entropic Coulomb couplings, can be probed
directly in these quantities.
Fig 2(a) shows the calculated diffuse scattering along

the nodal direction at low T using Ho2Ti2O7 (HTO) pa-
rameters25 of D = 1.41 K and J = −1.56 K. Fig 2(c),
shows the survival of the pinch point at finite T using
HTO parameters at T = 0.65 K. A corresponding “cor-
relation length”, associated with the charge-charge cor-
relation, can be extracted from the HWHM in the nodal
direction (Fig 2(b)). In the same figure, we show the
correlation length if the calculated defect density ρ is
used as the input parameter in the NN Ising case, where
the charges only interact entropically. The growth of the
correlation length is slower in the dipolar spin ice case
because of the magnetic Coulomb screening.
Thus, the picture that emerges is that the charge-

charge correlations are again exponentially decaying

in real space with a scale a2cubicξ
−2 ∼

(

1 + 4
√
2πD
3T

)

ρ

signaling the sparse defects of the Coulomb phase.
Scattering along the nodal directions near the pinch
points, driven entirely by these charges, reflects the

screening of these charges which is now enhanced by
the presence of the magnetic Coulomb interactions.
However, the spin-spin correlations have a power-law
tail which is dipolar and decays as 1/r3 at all tempera-
tures, signaling the presence of long-range interactions
and not of a Coulomb phase. The last feature can
already be seen from the soft-spin problem where the
spins interact through the ‘ideal’ dipolar interactions17

Hij = Pij = δij − 〈SiSj〉T=0,n=1, where 〈SiSj〉T=0,n=1

is calculated using Eq 2 at T = 0 and n = 1. Then
the spin-spin correlations 〈Sα(q)Sβ(−q)〉 become
(

n
λ(T ) − 1

)

〈Sα(q)Sβ(−q)〉T=0,n=1 +
(

2
n − 1

λ(T )

)

δαβ ,

with λ(T ) = nT−1+
√
1+n2T 2

2T . The charge-charge correla-
tions are however extremely short-ranged and non-zero
only for two tetrahedra sharing a common site.
This observation holds the key to explaining the pres-

ence of well-defined pinch points at high temperature
T = 10 K and strong chemical disorder in experiments on
spin ice18 diluted with non-magnetic Y, Ho2−xYxTi2O7,
where the constraint S4 = 0 must be massively violated.
These pinch points are entirely due to the form of the
long-range nature of the dipolar interactions on the py-
rochlore lattice, which mimic the spin-spin correlations
at T = 0.17 This can be seen explicitly in the leading
term of a high-temperature series expansion generalized
to include disorder where the probability of a site being
occupied by a magnetic Ho3+ ion is (1− x/2):

〈S(r1)S(r2)〉 =
(

1− x

2

)2
√
2πD

3T
〈S(r1)S(r2)〉T=0,n=1

−
(

1− x

2

)2
(

J

3
+

(

5−
√
2π
3

3

)

D

)

Γr1,r2

T

〈S(r)2〉 = (1− x/2) . (7)

From this, we calculate S̃(q) for Ho2−xYxTi2O7 at x =
0.3 at a high temperature of T = 10 K (Fig 1(b)). The
diffuse scattering pattern is similar to the experimen-
tal one (Fig 1(d)). Note that the discontinuity at the
pinch point is weak in D/T , and the “nodal” correla-
tions are broad and large (Fig 1(c)). However, higher-
order terms in 1/T will not necessarily preserve the dom-
inance of the pinch point features and instead lead to rich
low-temperature physics including a dilution dependent
“residual entropy”26 and the possibility of glassiness.27,28

Conclusions: Defects with gauge charge (S4 6= 0) in
both NN and dipolar models can be generated by thermal
excitations or chemical disorder. For D 6= 0, these carry
both entropic and magnetic Coulomb charges, while they
carry only entropic charge in the NN model. This leads
to a qualitative change in the spin correlations which
can be observed in equilibrium experiments probing the
pinch points. We have provided a simple and explicit
computational and conceptual framework encompassing
all these cases.
Acknowledgements: We thank C. Castelnovo (also for
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