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We introduce a Bloch-like basis in a C-component lowest Landau level fractional quantum Hall
effect (FQH), which entangles the real and internal degrees of freedom and preserves an Nx×Ny full
lattice translational symmetry. We implement the Haldane pseudopotential Hamiltonians in this
new basis. Their ground states are the model FQH wavefunctions, and our Bloch basis allows for
a mutatis mutandis transcription of these model wave functions to the fractional Chern insulator
(FCI) of arbitrary Chern number C, obtaining wavefunctions different from all previous proposals.
For C > 1, our wavefunctions are related to color-dependent magnetic-flux inserted versions of
Halperin and non-Abelian color-singlet states. We then provide large-size numerical results for both
the C = 1 and C = 3 cases. This new approach leads to improved overlaps compared to previous
proposals. We also discuss the adiabatic continuation from the FCI to the FQH in our Bloch basis,
both from the energy and the entanglement spectrum perspectives.

PACS numbers: 73.43.-f, 71.10.Fd, 03.65.Vf, 03.65.Ud

Recently, several groups showed that gapped topologi-
cal phases resembling the fractional quantum Hall (FQH)
effects can be stabilized in a flat band with Chern number
C 6= 0 by strong electronic interactions in the absence of
a magnetic field [1–3]. These are named fractional Chern
insulators (FCI). Most of the research efforts have been
focused on the case of C = 1: in various lattice mod-
els [4–7], several groups have provided compelling evi-
dence [1–3, 8–22] for the presence of the Read-Rezayi se-
ries [9–11, 23, 24] as well as the composite-fermion [25–27]
FQH states. The correlated phases in Chern bands with
C > 1 [28–32], however, are more intricate. Numerical
studies found both bosonic [32–34] and fermionic [33, 35]
topological phases resembling the color-SU(C) version of
the Halperin [36] and the non-Abelian spin-singlet [37]
(NASS) states [34], but with clear deviations [34].

To understand these novel topological phases, a series
of approaches were put forward. For C = 1, one can
identify the nature of these states 1) through a folding
principle [3, 9] that links the FCI and FQH quantum
numbers, 2) through the entanglement spectrum [38, 39]
of the ground states [3, 10], and 3) through overlaps with
model states obtained from replacing the LLL orbitals
with hybrid Wannier states, but leaving the occupation-
number weights unchanged [29, 40]. After proper gauge
fixing [41], high overlaps were obtained [41–43] from the
last approach and FCI-FQH adiabatic continuity was
demonstrated [42, 43].

For C > 1, the finite-size numerical results are harder
to understand. The FCI equivalent of the Halperin states
was proposed to occur at Abelian filling factors [29].
The particle entanglement spectrum [34], however, shows
clear discrepancy from such states. We are also unable
to consistently implement the exclusion principle for col-
orful FQH model states [44, 45] in the Wannier basis.
Naively, a C-component quantum Hall system contains
C decoupled copies of LLL, each having a unity Chern

number over a Brillouin zone (BZ) consisting of Nφ =
NxNy/C momenta [9]. This appears to be very different
from the single Chern number C manifold of the lattice
BZ of NxNy momenta, especially when NxNy/C 6∈ Z.

In this Letter, we break away from previous approaches
and construct in a C-component LLL a momentum-space
basis that mimics the Nx×Ny Bloch states in the Chern
band. These new one-body basis states entangle the
color and the real spaces, and form a single Nx × Ny
Brillouin zone with flat Berry curvature and Chern num-
ber C, regardless of lattice size commensuration with C.
This leads to a new mapping between FCI with arbi-
trary C on a lattice of arbitrary size and a C-component
FQH system. Our mapping operates directly in Bloch
momentum space and utilizes the full lattice transla-
tional symmetry, which removes the huge computational
cost of [41, 42]. For C = 1, our construction is equiva-
lent to the Wannier construction [40], except for a new
gauge fixing that improves the overlaps (than [41, 43]).
For C > 1, our model FCI states are equivalent to a
new, color-dependent magnetic-flux inserted version of
the Halperin or the NASS states, different from the ex-
isting proposal [29]. The FCI wavefunctions produced
by our approach have the correct entanglement spec-
trum [10, 34]. We demonstrate large overlaps for previ-
ously unattained sizes between our model FCI wavefunc-
tions and numerics for both C = 1 and the uncharted
case of C > 1.

Consider a translationally-invariant two-dimensional
(2D) band insulator on an Nx × Ny lattice with No or-
bitals per unit cell indexed by b. The Bravais lattice
is mxbx + myby, with (mx,my) ∈ Z2 and the primi-
tive translation vectors bx and by. We focus on a single
Chern band of Bloch states |k〉, labeled by momentum
k =

∑
α kαgα, with kα ∈ Z and gα · bβ = 2πδαβ/Nβ

(α, β ∈{x, y}). We use |k〉 and |kx, ky〉 interchangeably.
The orbital b is embedded at εb relative to its unit cell
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coordinate in real space [41]. The projected density in
the Chern band is [8, 9, 12]

ρq =

BZ∑
k

[∑
b

e−iq·εbu∗b(k)ub(k + q)

]
|k〉〈k + q|, (1)

where ub(k) is the periodic part of the Bloch wavefunc-
tion. At q = gα, the bracketed factor in Eq. (1) gives the
band geometry through the non-unitary exponentiated
Abelian Berry connection, Aα =

∑
b e
−igα·εbu∗b(k)ub(k+

gα). |Aα(k)| contains the quantum distance between |k〉
and |k+gα〉, whileAα(k) = Aα(k)/|Aα(k)| is the unitary
Berry connection between them. We define ρα = ρgα .

The gauge-invariant Wilson loops (geometric phases)
can be obtained by parallel transporting around a close
loop over the BZ torus. All the contractible loops con-
sist of a product of loops around a single plaquette,
namely ρxρy[ρyρx]−1 =

∑BZ
k D(k)W (k) |k〉〈k|. Here,

D(k) = |Ax(k)Ay(k + gx)A−1x (k + gy)A−1y (k)| ∈ R is
related to the non-uniformity of the quantum distance,
and W (k) = Ax(k)Ay(k + gx)[Ay(k)Ax(k + gy)]† ∈
U(1) is the unitary Wilson loop around the plaque-
tte with lower-left corner at k. For large enough Nx
and Ny, we can unambiguously extract Berry curva-
ture fk = 1

2π= logW (k), with finite-size normaliza-

tion convention
∑BZ

k fk = C. = takes the imaginary
part in the principal branch = log(z) ∈ (−π, π]. This
gives a sharp finite-size formula for the Chern number,
C = 1

2πTr= log
[
ρxρy(ρyρx)−1

]
. In addition to W (k),

there are also two independent non-contractible Wilson
loops on the torus, related to charge polarizations: the
Wilson loop around ky = 0, Wx = Phase

[
〈0|ρNxx |0〉

]
=

〈Nxgx|0〉
∏Nx−1
κ=0 Ax(κgx), with |0〉 ≡ |k = 0〉, and the

Wilson loop Wy around kx = 0 defined similarly.

The structure of geometric phases in the Chern band
is fully specified by the collection of the Wilson loops
W (k) and Wα, α = x, y. We now build a LLL basis in
Bloch k space, from which all properties of a Chern band
with arbitrary Chern number can be translated mutatis
mutandis. Diagonalizing the Haldane pseudopotentials
in this basis gives us the FCI model wavefunctions.

We consider electrons on a (continuum) torus
(Lx,Ly) ∼ (Nxbx, Nyby) with twist angle θ in a mag-
netic field B = Bêz. The magnetic translations are
T (d) = e−id·K, where K = −i~∇ − eA + eB × r. We
adopt the Landau gauge A(r) = Bxêy. The guiding-
center periodic boundary conditions T (Lα) = 1 quantize
the number of flux quanta Nφ = LxLy sin θ/(2πl2B) to an

integer [46], where lB =
√
~/(eB) is the magnetic length.

We set Nφ = NxNy in accordance with the Chern insu-
lator [9, 40] for C = 1. The usual basis {|j〉} in the LLL

is

〈x, y|j〉 =
1

(
√
πLylB)1/2

Z∑
n

exp
[
2π(j + nNφ)

x+ iy

Ly

− iπLxe
−iθ

NφLy
(j + nNφ)2

]
e−x

2/(2l2B). (2)

To make contact with the Bloch states, we introduce a
new LLL basis that diagonalizes translations in both di-
rections, T (Lα/Nα)|k〉 = e−i2πkα/Nα |k〉,

|k〉 =
1√
Nx

Nx−1∑
m=0

ei2πmkx/Nx |j = mNy + ky〉, (3)

where k =
∑
α kαgα lives on the lattice reciprocal to

(Lx,Ly). These states are periodic in kx, |kx +Nx, ky〉 =
|kx, ky〉, but quasi -periodic [50] in ky, |kx, ky +Ny〉 =
e−i2πkx/Nx |kx, ky〉. Each |k〉 satisfies T (Lα) = 1. We
find the LLL-projected density in the |k〉 basis,

ρq = e−q
2l2B/4

BZ∑
k

e−i2πqx(ky+qy/2)/Nφ |k〉〈k + q|, (4)

with q =
∑
α qαgα, qα ∈ Z. The Wilson loops are

W (k) = ei2π/Nφ , Wx = e−i2πky/Ny , and Wy = ei2πkx/Nx .
Using Eq. (4), one can diagonalize any FQH Hamil-

tonian
∑

q Vqρqρ−q (including pseudopotential and even
higher-body Hamiltonians), directly in the |k〉 basis, and
then translate the resulting wavefunction to the FCI by
replacing |k〉 with the lattice Bloch states. The advan-
tage of the new LLL basis [Eq. (3)] is many-fold. The
conditions for the relevance of the FQH state to FCI are
explicit in this basis [Eq. (4)]: the Berry curvature must
not fluctuate wildly [8] and the quantum distance [51]
over the Chern band must fall off with q rapidly, simi-
lar to e−q

2l2B/4. Eq. (4) also allows a much simpler and
more effective treatment of the curvature fluctuations in
gauge fixing (see below). The most practical advantage
of working directly in Bloch basis is the avoidance of the
many-body Fourier transform in the Wannier prescrip-
tion. This greatly simplifies the numerical implementa-
tion and nearly squares the largest Hilbert space dimen-
sion that we can study in numerics.

We now turn to the case of C > 1 and construct a
Bloch-like basis in the C-component LLL with Nφ =
NxNy/C fluxes that forms an Nx×Ny BZ with flat cur-
vature and Chern number C. The starting point is to
look for two commuting translation operators that re-
solve an Nx × Ny BZ. The finite magnetic translations
Tα = T (Lα/Nα) seem natural, but they do not commute,
TxTy = TyTxe

i2π/C . The cure must come from the color
structure of the multi-component system. We assume a
color-neutral Hamiltonian H. Two color operators P,Q
(diagonal in real space) commute with the Hamiltonian,

P |σ〉 = |σ + 1 (mod C)〉, Q|σ〉 = ei2πσ/C |σ〉. (5)
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|σ〉, with σ ∈ ZC , are color eigenstates. Their commuta-
tion relation PQ = QPe−i2π/C is complementary to that
of Tx, Ty. The two color-entangled operators T̃x = TxP

and T̃y = TyQ commute with each other and H [52]. We

define the eigenstates |k〉 with T̃α|k〉 = e−i2πkα/Nα |k〉,

〈x, y, σ|k〉 =
1

(
√
πNxLylB)1/2

Z∑
n

ei2π(nC+σ)kx/Nx

exp

[
2π
(
ky + nNy +

σ

C
Ny

) x+ iy

Ly

− iπLxe
−iθ

NφLy

(
ky + nNy +

σ

C
Ny

)2 ]
e−x

2/(2l2B). (6)

Due to [T (Lα), T̃β ] 6= 0, generically we have to abandon
the boundary condition T (Lα) = 1, and adopt the color-

entangled generalization T̃Nαα = 1, i.e.

T (Lx)PNx = T (Ly)QNy = 1. (7)

This quantizes kα to integers. Since T̃Nαα commute with
each other by construction, Nφ is not restricted to an inte-
ger any more, unlike [29]. We only require Nx, Ny, C ∈ Z.
The |k〉 states are periodic in kx, but quasi -periodic in ky,
|kx, ky +Ny〉 = e−i2πkxC/Nx |kx, ky〉. There are Nx ×Ny
independent |kx, ky〉 states, which form a BZ of the same
size as the lattice and with the same Chern number C.
After summing over colors, the LLL-projected density op-
erator ρq =

∑C
σ ρqσ in the color-entangled basis |k〉 takes

identical form as in Eq. 4, except for the generalization
Nφ = NxNy/C. The color-entangled BZ has flat curva-
ture fk = 1/Nφ, as inferred from W (k) = ei2π/Nφ . The
matrix elements of ρq in the C-component LLL, which
are the building blocks of the interacting Hamiltonian,
are exactly equal to the C-th power of those in the single
component LLL. Model wavefunctions of pseudopoten-
tial Hamiltonians in the |k〉 basis can immediately be
translated to the FCI with arbitrary C. Further, we can
generalize the color-entangled boundary conditions in the
LLL to T̃Nαα = e−i2πγα , where the twist angle γα ∈ R cor-
responds to flux insertions. This shifts the momentum
k→ k + γ with γ =

∑
α γαgα. The connections become

Aα(k + γ), while the large Wilson loops around kα = 0
are Wx(γy) = e−i2πCγy/Ny and Wy(γx) = ei2πCγx/Nx .

Linking together the LLL |k〉 and the lattice |k〉 bases
requires one additional step of gauge fixing, |k〉 →
eiζk |k〉. After that, any many-body state |Ψ〉L over our
colorful LLL can be transcribed to the FCI [53],

|Ψ〉 =
∑
{k}

ei
∑

k ζk |{k}〉 × γ
L〈{k}|Ψ〉L, (8)

where γ
L〈{k}| is the color-entangled occupation-number

basis in the LLL with twist γ. See Supplemental Mate-
rial [47] for the explicit construction of eiζk and γ.

For FCI with C > 1, previous studies suggested that
the equivalent FQH states are the SU(C) color-singlet
Halperin states [29, 33, 34, 48]. They are the exact zero
modes of the color-neutral LLL-projected Hamiltonian
HFQH =

∑
q Vqρqρ−q, where q is summed over the in-

finite lattice reciprocal to (Lx,Ly) and the interaction
between color-neutral densities ρq =

∑
σ ρqσ is Vq = V0

for bosons and Vq = V0 + (1−q2l2B)V1 for fermions, with
pseudopotential Vn > 0 [54]. For the FQH effect in 2D
electron gas, the boundary conditions T (Lα) = 1 are im-
posed separately on different color components. In the
LLL description of a FCI, however, we require the sys-
tem to be periodic under the color-entangled translations
T̃Nαα . This breaks the SU(C) symmetry. To compare
with the Halperin SU(C)-singlet states, we examine the
commensurate case Nx/C ∈ Z. The boundary conditions
in Eq. (7) thread Φσ = σNy/C (color-dependent) mag-
netic fluxes along the y direction into the σ-component
of the LLL [55]. In the one-dimensional localized basis
for LLL [Eq. (2)], this shifts the Landau orbitals of color
σ by ΦσLx/Nφ in real space. Hence we propose that the
Wannier mapping [29] be modified to identify the hy-
brid Wannier states with our shifted LLL orbitals. In
the generic, non-commensurate case, translation T (Lx)
changes the color of the particle, due to T (Lx)PNx = 1.
Our construction thus provides a finite-size realization
of the “worm-hole” connecting different color compo-
nents [29].

We demonstrate the Bloch construction using the ruby
lattice model (C = 1) [7] and the two-orbital triangular
lattice model (C = 3) [31]. We construct the FCI model
states through Eq. (8) from the exact-diagonalization
ground states of HFQH with color-entangled boundaries.
We find high overlaps (Fig. 1a) and identical low-lying
structure in the entanglement spectrum with the FCI
ground states [10, 34]. The 12-fermion Laughlin state
on the ruby lattice model has a Hilbert space of dimen-
sion 3.4× 107. This state is well captured by the model
wave function obtained from our construction (overlap
≈ 0.99). The triangular lattice model has decent over-
laps, albeit lower than the ruby lattice model. The model
we propose has the particle-hole symmetry, which is gen-
erally absent in the FCI models [27, 35]. When the lattice
model exhibits such an emergent symmetry, our construc-
tion can also capture it [47].

To further examine our construction for C > 1, we
study the interpolation Hamiltonian Hλ = (1− λ)HFCI+
λHFQH, 0 ≤ λ ≤ 1 [42, 43]. For bosonic on-site density-
density interaction on the triangular lattice, HFCI =
U
∑
ab

∑
{k1−3} ψ̃

†
k1a

ψ̃†k2b
ψ̃k3b

ψ̃k4a
, where k4 = k1 +k2−

k3 (mod Nαgα), and ψ̃†kb = eiζku∗b(k)ψ†k is gauge-fixed

by eiζk , with |k〉 = ψ†k|∅〉. For HFQH, we use color-
entanglement boundary conditions γ. We find that the
FCI model states are adiabatically connected to the ac-
tual ground states: Hλ remains gapped for λ ∈ [0, 1] and
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FIG. 1: Panel a) shows the overlaps O between our FCI
model states and the ground states of the fermionic ruby and
the bosonic triangular lattice models, as a function of the
Hilbert space dimension d. Panels b-d) demonstrate the adi-
abatic continuity between the triangular lattice model and
the color-entangled Halperin pseudopotential Hamiltonian on
6 × 4, 7 × 4, 8 × 4, and 6 × 6 lattices (ν = 1/4 filling). We
set U = 7.4237, 7.0003, 6.9677, and 5.0955 resp. to equalize
the energy gaps at λ = 0, 1. Panel b) shows the overlaps O
between our FCI model states and the ground states of the
interpolation Hamiltonian Hλ. Panel c) shows the energy gap
∆E above the ground states of Hλ. Panel d) shows the entan-
glement gap ∆ξ of the ground states of Hλ. ∆ξ is defined as
the gap between the low-lying structure identical to the full
entanglement spectrum of the model states (at λ = 1) and
the higher levels. By this definition, ∆ξ is infinity at λ = 1.

its ground states retain the characters of the FCI model
states as seen in both overlaps and particle entanglement
spectrum (Fig. 1b-d). As observed in [34], the 6-boson
state on 6× 4 lattice has clear deviations from the usual
Halperin state in the entanglement spectrum. Our FCI
model state exactly reproduces these novel features. Note
that the 8×4 lattice is closer to the thin-torus limit [49],
resulting in smaller overlaps and ∆ξ values.

In this Letter, we introduce a Bloch basis for multicom-
ponent LLL with rational number of fluxes that entangles
real and internal spaces on the one-body level. We estab-
lish a Bloch-basis mapping between a Chern band with an
arbitrary Chern number C on an arbitrary Nx×Ny lattice
and a C-component LLL with Nφ = NxNy/C ∈ Q fluxes.
This mapping leads to a novel scheme, which we call
Bloch construction, to build FCI model states from color-
neutral FQH Hamiltonians. It treats bosonic/fermionic
FCI with arbitrary Nx, Ny, C ∈ Z in a wholesale fashion,
and can handle large system sizes. The new gauge fixing
in our basis significantly improves the overlaps with the
actual ground states when curvature strongly fluctuates.

We refer to the constructed FCI model states as
the color-entangled Halperin states. They are distinct
from the SU(C)-singlet Halperin states due to the color-
entangled boundary conditions. When the lattice size
is commensurate with C, the color-entangled states are

the generalization of the usual Halperin states to color-
dependent twisted boundaries. More generally, the lat-
tice setup opens up access to the color-entangled, un-
physical sectors of a multicomponent FQH system in a
physical way. Our new formalism can be applied to the
NASS states, and can be used to extract the exclusion
principle for the counting of low-lying levels in the energy
and the entanglement spectra.
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