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Abstract

We propose a novel mechanism to describe E×B flow pattern formation based upon the dynamics

of propagation of heat flux modulations. The E×B flows of interest are staircases, which are quasi-

regular patterns of strong, localized shear layers and profile corrugations interspersed between

regions of avalanching. An analogy of staircase formation to jam formation in traffic flow is used

to develop an extended model of heat avalanche dynamics. The extension includes a flux response

time, during which the instantaneous heat flux relaxes to the mean heat flux, determined by

symmetry constraints. The response time introduced here is the counterpart of a drivers’ response

time in traffic, during which drivers adjust their speed to match the background traffic flow. The

finite response time causes the growth of mesoscale temperature perturbations, which evolve to

form profile corrugations. The length scale associated with the maximum growth rate scales as

∆2 ∼ (vthi/λTi)ρi
√
χneoτ , where λTi is a typical of heat pulse speed, χneo is the neoclassical

thermal diffusivity, and τ is the response time of the heat flux. The connection between the scale

length ∆2 and the staircase inter-step scale is discussed.
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FIG. 1. E ×B staircases and profile corrugations.

Pattern formation is a widely observed phenomenon in non-equilibrium and non-linear

systems[1]. In magnetized plasmas, E ×B flow patterns are often observed to self-organize

and emerge from the bath of turbulence[2, 3]. A well-known example of such processes is

the formation of a pattern of zonal flows[2], which are generated by drift wave turbulence

by processes such as modulational instability[2], mixing of potential vorticity of drift wave

turbulence[4], etc. More recently, a new class of flow pattern, called the E × B staircases

(Fig.1), was observed in a flux-driven full-f gyrokinetic (GK) simulation using the GYSELA

code[5]. As discussed on the basis of the simulation study, E×B staircases are quasi-regular

steady patterns of localized shear flows and corrugated temperature profiles(Fig.1). The

shear flows are interspaced between regions of turbulent avalanching[5–9] separated by ∆,

typically in the mesoscale range lc < ∆ < a. Here lc is the turbulence correlation length

and a is the system size. In the interspaced regions of extent ∆, transport is dominated by

stochastic avalanches[5]. Scattering of fluctuation energy and spreading of the turbulence

may occur in these regions[10–13]. The entire pattern of the localized shear layers and the

regions of extent ∆ is a E ×B staircase, so named after potential vorticity (PV) staircases

of jets in the atmosphere[14, 15].

The generation of E ×B staircases might be not surprising, since avalanches should mix

potential vorticity of plasmas and hence generate E ×B flows[4]. However, what is remark-

able here is the fact that a quasi-regular pattern of flows, interspaced by stochastic regions

of extent ∆, emerges from the bath of avalanches. Dynamics of this pattern formation from

avalanches cannot be addressed by existing theory[6, 7], as such models predict avalanches

of the system size a dominate transport. Thus, in order to describe the formation of E ×B

staircase pattern, we need a further development of the theory of avalanche dynamics, which
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explains the emergence of a particular mesoscale.

In this letter, we propose a model to describe the formation of E ×B staircases from an

ensemble of heat avalanches. The model extends the basic theory of avalanche dynamics[6, 7]

to include a finite relaxation time, during which the heat flux relaxes to the mean value

determined by symmetry constraints. The key idea for the model extension is the analogy

of staircase formation to jam formation in traffic flow[16, 17]. Namely, we view staircase

formation as a heat flux ‘jam’ that causes profile corrugation (Fig.1), which is analogous

to a traffic jam that causes corrugations in the local car density in a traffic flow (Fig.2).

In traffic jam formation, an important time scale is the drivers’ response time. Since each

individual car has its own instantaneous velocity, drivers often need to adjust their speed to

the background traffic flow in a finite time τ . As shown in the literature[16, 17], if the drivers’

response time τ is too long, traffic jams can form. In traffic flow theory, ‘jams’ appear as

quasi-regular spikes in the car density, which evolve from nonlinear density waves. To model

such an effect in plasmas, we are then led to introduce a finite response time τ , during which

instantaneous heat flux relaxes to the mean heat flux, determined by symmetry constraints.

This approach tacitly replaces the static Fick’s law with an evolutionary Guyer-Krumhansl

relation[18] τ∂tQ−χ∇T +Q = 0. The latter may be systematically obtained from moments

of the fluctuation entropy equation[19]. As shown in the following, the extended model

equation has a mathematical structure similar to the Kuramoto-Sivashinsky equation[1],

familiar from the study of pattern formation dynamics. We also show that the extended

model describes a heat flux ‘jam’ and profile corrugation, which appears as an instability,

in analogy to the clustering instability of the formation of a traffic jam. We argue that

such local amplification of heat and profile corrugations can lead to the formation of E ×B

staircases. We also derive the scale for the maximum growth rate and evaluate its value at

a stationary state achieved via γjam ∼ v′E×B. Here γjam is the maximum growth rate of the

jamming instability and v′E×B is the E × B shearing rate across the jam scale. The scale

length ∆ that gives the maximum growth rate is evaluated, and we argue that the length

scale ∆ falls in the mesoscale range and is comparable to the staircase step spacing.

The model equation is derived as follows. Around the marginal profile, a conserved order

parameter is the temperature perturbation, and its dynamics is described by

∂tδT + ∂xQ[δT ] = 0 (1)
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heat avalanche traffic flow

temperature δT car density perturbation δρ

→ corrugation → jam

heat flux Q traffic flow v

Q0[δT ] V (δρ) − (ν/ρ)∂xδρ

mean flux via background traffic flow,

symmetry constraints determined empirically

or by general consideration

heat flux relaxes drivers adjust their speed to

to the mean flux the surrounding traffic speed

in a time τ in a time τ

TABLE I. Comparison of heat avalanche dynamics and traffic jam dynamics

where Q is the heat flux. Here, it is understood that the righthand side vanishes, up to a

source and noise. The equation is closed by employing a model for the flux Q[δT ]. A useful

approach for constructing Q[δT ] is to exploit the symmetry properties of heat avalanche

dynamics[6, 7]. These are based on the simple idea that net transport must be down the

gradient in the avalanching process. In other words, blobs (local heat surpluses) propagate

down the mean gradient while holes (local heat deficits) propagate up the mean gradient.

This property requires Q[δT ] to satisfy joint reflection symmetry, i.e. the dynamics should

be invariant under the transformation of x → −x and δT → −δT . This constrains the form

of Q[δT ] to be

Q[δT ] =
∑

p,q,r

{
A2p(δT )

2p + Bq,r∂
q
xδT

r + ...
}

(2)
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with q + r = even. A non-trivial, nonlinear flux is for example

Q0[δT ] =
λ

2
(δT )2 − χ2∂xδT + χ4∂

3
xδT. (3)

Here χ2 is roughly comparable to χneo, i.e. the diffusivity at marginality. Combining Eqns.

(1) and (3) gives Burger’s equation (up to χ4) which was derived in the former study[7].

Here, we propose an extension of the model for Q[δT ], to describe profile corrugation and

E×B staircase formation. The key to the extension is an analogy between profile corrugation

in heat avalanche dynamics and jam in traffic flow dynamics[16, 17], as discussed above(table

I). To proceed, it is useful to recall that traffic jam dynamics is sometimes modeled[16] as

a 1D ‘gas dynamic’ flow of the form:

∂tρ+ ∂x(ρv) = 0, (4)

∂tv + v∂xv = −1

τ

(
v − V (ρ) +

ν

ρ
∂xρ

)
. (5)

Here, Eq.(4) is the continuity equation for the car density ρ, and Eq.(5) describes the

dynamics of traffic velocity, including drivers’ finite time response τ to a specified background

traffic flow speed V (ρ)−(ν/ρ)∂xρ. An interesting feature of the traffic dynamics model is that

the model describes jam formation. The formation of jam is related to an instability, whose

threshold is given by τ > ν/(ρ20V
′

0
2). Here ρ0 is an equilibrium density and V ′

0 = dV/dρ|ρ0.
Note the instability favors a long response time; when drivers cannot promptly respond to

the background traffic flow, an instability occurs and jams form. Eventually, the instability

develops into a nonlinear wave in the density profile, which is termed a ‘jamiton’[17]. Based

on the analogy between the traffic jam and temperature corrugation by heat avalanche, we

expect that such jams can be modeled in avalanche dynamics by extending the heat flux

equation to:

∂tQ = −1

τ
(Q−Q0[δT ]). (6)

Namely, we include a process of relaxation of the instantaneous heat flux Q to the mean flux

Q0[δT ] in a finite time τ , as heat pulses adjust to the ambient heat flux. Eq.(6), together

with Eq.(1), constitutes the basic model that we consider in the rest of the paper.

While the model equation (Eq.(6)) is derived from heuristic argument, a more systematic

derivation is possible, and useful to gain more insight into the response time τ . One sys-

tematic approach is to consider the evolution of the 2-point fluctuation phase space density
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correlation - i.e. ∂t〈δf(1)δf(2)〉 - and then take its energy moment[19]. This yields the

evolution equation for the turbulent heat flux correlator. Such an analysis, described in [19],

yields a nonlinear version of the Guyer-Krumhansl flux-gradient relation:

∂tQ− ∂x(Dx(E)∂xQ) = −Dy(E)k2
y(Q− χ(E)∂x〈T 〉). (7)

Here, E is the turbulent intensity. The first term is simply the delayed response of the flux.

The second term corresponds to the turbulent transport of heat flux, which is akin to turbu-

lence spreading and is modeled using a simple quasi-linear expression ΓQ ∼ −D(E)∂xQ. The

first term in the right hand side is the turbulent eddy damping, where ky is roughly the wave

length of the mode of the maximum growth. In the last term, χ(E) = (Dy(E)k2
y)

−1〈ṽ2r〉 ∼
τc〈ṽ2r〉 is the turbulent heat diffusivity, and this term reduces to the Fick’s law in the local,

stationary limit by balancing against the eddy damping term. By comparing Eq.(7) and

Eq.(6), we expect that the finite relaxation time τ would be comparable to the nonlinear

decorrelation time, (k2
yDy(E))−1. We also note that the relaxation time τ is nonlinear, i.e.

τ [δT ], since τ ∝ (k2
yDy(E))−1 and E ∝ δT . Finally, we remark that the extension of the

flux-gradient relation to include the finite response time does not violate the 2nd law of ther-

modynamics, since the increase of entropy can be guaranteed by extending the definition of

the entropy production.[19]

While the systematic approach has its own merit, it is not an easy task to solve Eq.(1)

and Eq.(7) simultaneously, with the nonlinear response time τ [δT ]. Here, instead, given the

solid foundation for Eq.(6), we use Eq.(6) as the model for the heat flux Q, and treat τ

as a parameter of the order of the turbulence correlation time τc. While this simplification

tacitly assumes that we can neglect the dynamics of the background turbulence, such a

simplification may be allowed when the background turbulence is in a stationary state.

Then, combining Eqs.(1) and (6), we obtain a single equation for δT evolution:

∂tδT + λδT∂xδT = χ2∂
2
xδT − χ4∂

4
xδT − τ∂2

t δT. (8)

This equation describes the dynamics of the temperature profile, where instantaneous heat

flux relaxes toward the mean flux Q0[δT ] in the finite time τ . Eq.(8) retains avalanche

dynamics, as it reduces to Burgers’ equation in the limit of long wave length and short

τ , i.e. ∂4
x → 0 and τ → 0. Here as an extension, we included τ and χ4. As explained

below, the finite response time τ allows an instability, from which the corrugation of the
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temperature profile develops. χ4 is included to prevent an arbitrarily small scale structure

from developing, at which point theory breaks down.

Now, we turn to the analysis of Eq.(8). Here, the aim is to show that an instability can

occur and δT grows to corrugate the temperature profile. We also derive the scale length

that gives the maximum corrugation growth and compare it to the staircase width. The

basic feature of the instability is nicely illustrated by a simple calculation. To see this, we

consider the evolution of a perturbation δT = δT0 + δ̃T . The dynamics is given by:

∂tδ̃T + c0∂xδ̃T = χ2∂
2
xδ̃T − χ4∂

4
xδ̃T − τ∂2

t δ̃T (9)

where c0 ≡ λδT0. If we evaluate the righthand side in the moving frame of the initial

avalanche c0, we have (χ2 − τc20)∂
2
xδ̃T − χ4∂

4
xδ̃T . Hence we see that if χ2 − τc20 < 0 then we

have a ‘negative diffusivity’, and thus expect an instability to occur. This is analogous to

zonal flow generation by a negative viscosity, which occurs during modulational instability

of drift wave turbulence[2]. Then, as zonal flows are secondary modes generated in the bath

of primary drift wave turbulence, we may view the ‘avalanche jamiton’ as a secondary mode

generated in the gas of primary avalanches. In broader contexts, both phenomena are ex-

ample of ‘second sound’ phenomena, which are generated in the primary gas of phonons[18].

Finally, we point out that the nonlinear dynamics of δ̃T would be similar to that of the

Kuramoto-Sivashinsky (K-S) equation[1], which consists of a quadratic nonlinear term, a

negative viscosity term, and a hyper-viscosity term. The K-S model is successful in repro-

ducing many cellular patterns[1] and may be important for a nonlinear analysis of avalanche

flux jamiton. The nonlinear equation, coupled with the turbulence evolution, may be utilized

for nonlinear analysis of spikes in staircases.

The growth rate of the instability is calculated as follows. Fourier analyzing Eq.(9) gives

the dispersion relation:

ωr,k = ± 1

2τ

√
r − 1

2
+ 2τχ2k2

(
1 +

χ4k2

χ2

)
, (10)

γk = − 1

2τ
+

1

2τ

√
r + 1

2
− 2τχ2k2

(
1 +

χ4k2

χ2

)
, (11)

where r ≡
√

{4τχ2k2 (1 + χ4k2/χ2)}+ 16c20k
2τ 2. The threshold for the instability (γk > 0)

is then

τ >
χ2

c20

(
1 +

χ4k
2

χ2

)
. (12)
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Thus the instability occurs when the response time is sufficiently long, as in the traffic

dynamics model. Note that the threshold states c0 >
√

χ2/τ , i.e. the initial avalanche

speed has to be faster than the heat diffusion length in one relaxation time. This puts a

threshold on pulse size for growth.

We now derive the wave number that gives the maximum growth rate. This number is of

interest, since the scale associated with that wave number can be compared to a typical E×B

staircase step width ∆stair. The wave number for γmax is obtained by solving ∂γ/∂k2 = 0.

Seeking a solution k2 < χ2/χ4, we obtain

k2
max

∼= χ2

χ4

√
χ4c20
4χ3

2

=
λδT0

2
√
χ2χ4

. (13)

Here c0 = λδT0 is the speed of the initial avalanche. With the wave number, we can estimate

the scale of the most unstable fluctuation and the maximal growth rate as ∆2
max = k−2

max and

γmax
∼= c0/(2ldiff), where ldiff =

√
χ2τ ∼ √

χneoτ .

Now we evaluate ∆2
max at a saturated state. Namely, once the jaming instability starts,

the profile starts corrugating. Such profile corrugation leads to the formation of E×B shear

layers, which can feedback on the instability through standard shearing effects v′E×B[20].

Crudely, we expect that saturation might occur when γmax ∼ v′E×B. Here, v
′

E×B is produced

by corrugated profiles via radial force balance, i.e:

v′E×B
∼= c

eB
δT ′′ ∼= cδT

eB∆2
max

∼ ωciρ
2
iλTi

2
√
χ2χ4

(
δT

Ti

)2

. (14)

γmax at the saturated state is obtained by taking δT0 → δT . Equating the two expression,

we find the saturated amplitude is δT/Ti ∼ {1/(vthiρi)}
√
(χ4/τ). Using that result, we

obtain the scale length for γmax as

∆2
max

ρ2i
∼ 2vthi

λTi

√
χ2τ

ρ2i
. (15)

Using typical plasma parameters Ti ∼ 1keV, n ∼ 1013cm−3, B ∼ 104Gauss, ǫ0 ∼ 1/3,

and assuming λTi ∼ a typical pulse propagation speed ∼ 100cm/0.1sec ∼ 103cm/sec, τ ∼
∆ω−1 ∼ 10−5sec, χ2 ∼ χneo ∼ νiiρ

2
i /ǫ

3/2
0 ∼ 1.4× 102cm2/sec, and lc ∼ 1.5cm for k⊥ρi ∼ 0.2,

the length scale is qualitatively estimated to be ∆max ∼ 12× lc ∼ 18cm. Then ∆max satisfies

lc < ∆max < a, and the scale of the maximum flux ‘jamiton’ growth is consistent with the

typical mesoscale staircase width ∆stair.
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In summary, we discussed the formation of E × B staircases and profile corrugation, by

extending heat avalanche dynamics to include a response time for plasmas to relax the heat

flux toward the mean heat flux determined by symmetry constraints. The extension was

based on the analogy of the profile corrugation in plasmas to traffic jam dynamics. The finite

response time allows an instability, which will occur for long flux response time. The wave

number that gives the maximum growth rate was calculated. We argued that the instability

saturates when the maximum growth rate is comparable to the shearing rate exerted by

E ×B staircase generated via profile corrugation. For typical plasma parameters, the scale

for maximal growth rate agrees with the staircase step spacing.
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12, 090903 (2005).
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