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We present Direct Statistical Simulation (DSS) of jet formation on a β-plane, solving for the
statistics of a fluid flow via an expansion in cumulants. Here we compare an expansion truncated at
second order (CE2) to statistics accumulated by direct numerical simulations (DNS). We show that,
for jets near equilibrium, CE2 is capable of reproducing the jet structure (although some differences
remain in the second cumulant). However as the degree of departure from equilibrium is increased
(as measured by the zonostrophy parameter) the jets meander more and CE2 becomes less accurate.
We discuss a possible remedy by inclusion of higher cumulants.
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Jets are relatively narrow bands of fast-flowing fluid
moving coherently in one direction. They are ubiquitous
in nature, found in Earth’s oceans and atmosphere, the
outer layers of gas giant planets, the interior of stars, and
laboratory experiments with fluids and plasmas [1]. Jets
play an important role for these fluids, and it is therefore
important to understand the mechanism(s) that govern
their formation. Sometimes jets are driven by energy
input at small spatial scales; the question then is how
this energy is transferred into large scale coherent mo-
tion. Two competing mechanisms have been proposed,
both of which rely on the interaction of turbulence and
rotation. The first involves the scale-by-scale transfer of
energy known as the inverse cascade [2]. Large-scale vor-
tices are known to be generated by this mechanism. The
other mechanism relies upon direct transfer of energy to
the largest scales. It is hard to disentangle these two
mechanisms in experiments and in simulations. Direct
calculation of statistics and quasilinear direct numerical
simulation (DNS) calculations have demonstrated that
jets can be formed by the direct mechanism, not relying
on an inverse cascade [3–6] and see also [7].

Non-equilibrium statistical mechanics can be used to
understand universal aspects of fluids. Isotropic, homo-
geneous, turbulence is at present beyond the reach of a
complete statistical theory. By contrast, inhomogeneous
flows such as jets may be accessible to Direct Statistical
Simulation (DSS), that is, methods solving directly for
the statistics of the flow [8]. DSS offers the possibility
of a deeper understanding fluid dynamics, as well as a
practical speed-up in obtaining statistics [5]. In the limit
of small driving and dissipation, equilibrium statistical
mechanics is a powerful tool for understanding quasi two-
dimensional flows (for a review see Ref. [9]). Here and
below the word “equilibrium” refers to the limiting case
for which the rates of forcing and dissipation go to zero.
Away from equilibrium, Stochastic Structural Stability
Theory (SSST) [4, 10, 11] is one approach that has been

explored to understand the formation and maintenance
of jets. Here we instead investigate systematic expansion
in equal-time, but spatially nonlocal, cumulants of the
flow. When truncated at second order, the cumulant ex-
pansion (denoted CE2) is closely related to SSST [6] but
it is only the starting point for a perturbative expansion
in higher cumulants.

This paper examines the accuracy of DSS at CE2 as a
representation of the statistics of turbulent flows driven
away from equilibrium. CE2 includes the interaction of
mean flows with eddies to drive eddies and that of ed-
dies with eddies to drive mean flows, but removes the
interaction of eddies with eddies in the evolution equa-
tion for the eddies [12]; an interaction that has been
termed the “EENL” (eddy-eddy nonlinearity) by Srini-
vasan and Young [6]. Here eddies are formally the fluc-
tuations about the zonal mean flow. It has been argued
[9, 13] that CE2 is an exact representation in the quasi-
equilibrium limit, but the domain of validity of such a
truncation remains largely untested. We conduct nu-
merical experiments to investigate the accuracy of DSS
at CE2 for systems removed from quasi-equilibrium by
considering a model problem of the driving of jets by
small-scale forcing on a β-plane. This system has been
studied extensively within the framework of DNS in both
the fully nonlinear and quasi-linear regimes [6, 14]. Al-
though this model is the simplest that includes all the
requisite features for our purposes, i.e. anisotropy, non-
trivial long-range correlations and mean flows, we note
that it is a rigorous test of statistical methods in that it is
stochastically driven and translationally invariant in two
directions, with only the emergence of jets spontaneously
breaking the latitudinal symmetry [6] and leading to in-
homogeneity. We return to this in the discussion at the
end of the paper.

The β-plane we use is periodic in both x (longitude)
and y (latitude), with the domain of size 2π × 2π. The
motion of the incompressible fluid is damped by a sin-
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gle friction κ and by small-scale dissipation that absorbs
structures at the finest scales. (Some models examined in
Ref. [11] have friction damping the fluctuations 10 times
greater than that slowing the zonal mean flow.) The fluid
is driven by random (stochastic) forcing η. This type of
stochastic forcing is widely used as a model of small-scale
processes that inject energy into the fluid, with the small
and fast scales acting as a random influence on the large
and slow scales [15–17]. The time-evolution of the rel-

ative vorticity ζ ≡ ẑ · (~∇ × ~u) is given by for example
[18]:

∂tζ + J(ψ, ζ) + β∂xψ = −κζ + ν∇2ζ + η, (1)

ζ = ∇2ψ, (2)

where J(a, b) = ∂xa ∂yb−∂ya ∂xb. Here ψ is the stream-
function and the fluid velocity ~u = (u, v) = (−∂yψ, ∂xψ);
we have set the deformation radius of the flow to be infi-
nite. The forcing is random with a short (but non-zero)
renewal time (0.1 ≤ rt ≤ 1) and concentrated in the spec-
tral band of wavenumbers kmin ≤ |kx|, |ky| ≤ kmax (for
these runs kmin = 7, kmax = 10). The amplitude of the
forcing is chosen from a Gaussian distribution with stan-
dard deviation aη. This is a popular choice of forcing; a
detailed discussion of the role of forcing in DNS of such
problems is given in Ref. [14].

Rhines [19], who investigated the unforced system,
demonstrated how correlations between nonlinear Rossby
waves could lead to the generation of zonal flows and
identified the scale at which zonal flows become im-
portant in mediating the dynamics of these waves (see
e.g. Ref. [20]). This “Rhines scale” is given by LR =

(2U/β)
1
2 , where U is the rms velocity of the flow, and

occurs when the second and third terms of equation (1)
are comparable (and are comparable with the frictional
term [21]). There has been much research into the im-
portance of this lengthscale for the ultimate latitudinal
scale of jets (see e.g. Ref. [22] and the references therein),
but it is also becoming clear that the dynamics of zona-
tion is also controlled by another length scale Lε [23],
which measures the intensity of the forcing relative to the
background potential vorticity gradient. For the simple
β-plane model Lε = 0.5(ε/β3)

1
5 where ε is the energy

input rate of the stochastic forcing η.
The ratio of these two length scales has been pro-

posed, for models with small-scale forcing, to play a crit-
ical role in determining the strength and stability of jets
[18, 24], for cases where the same damping is applied
to the mean flows and the turbulent fluctuations. This
local measure, termed the zonostrophy index, is given
by Rβ ≡ LR/Lε = U1/2β1/10/21/2ε1/5. In general, if
the zonostrophy index is large then strong stable jets are
found, whilst for small Rβ the jets are weaker, meander
more and no staircase is formed [14]. The zonostrophy
index is therefore a measure of how far the system is
driven out of equilibrium. Note that Rβ can also be writ-
ten (on balancing the energy input with the dissipation

FIG. 1. Snapshot density plot of vorticity together with zonal
mean vorticity profile of jets found by DNS. The parameters
are κ = 10−3, ν = 10−4, β = 16. For these parameters
Rβ = 2.12.

via friction ε ∼ κU2) in terms of the ratio of an advec-
tive time on the Rhines scale to a dissipative timescale

(Fβ = κLR/U) i.e. Rβ = F
−1/5
β . Hence the quasi-

equilibrium limit is given by Rβ →∞. Recent estimates
have put Rβ between 5 and 6 for flows on the surface of
Jupiter [25], whilst Rβ ∼ 2 for oceanic jets [18]. We note
that the zonostrophy index might not be the only pa-
rameter controlling the dynamics of the jets. It has been
shown that if the forcing lengthscale remains important
then the dynamics is controlled by two non-dimensional
parameters separately[6], and there is a regime given by
a chain inequality for which Rβ is the only important
non-dimensional parameter[18]. Nonetheless, even in this
regime Rβ does give a measure of lack of equilibrium.

DNS is performed using a pseudo-spectral scheme opti-
mised for parallel machines [26]. For these simulations we
utilise resolutions of up to 20482. The forcing is applied
at moderate scale (with rta

2
η = 0.01 for all calculations)

and the system is evolved from rest until a statistically
steady state is reached. Fig. 1 shows a snapshot of the
vorticity and zonally averaged vorticity for a state with
3 zonal jets. For this calculation Rβ = 2.12 and the jet is
well removed from the quasi-equilibrium limit. We note
that this limit is difficult to simulate in DNS, requiring
long integrations. Nonetheless the Hovmöller diagram in
Fig. 2(a) of the (t, y) dependence of the mean flow to-
gether with a running time average calculated from the
midpoint of the calculation shows that the zonal flows do
not meander too much in space and well-defined averages
can be obtained — though we note that lengthy integra-
tions of the dynamics are required for meaningful flow
statistics. Fig. 2(b) shows the corresponding diagram
when Rβ has been reduced to 1.98, which is achieved here
by lowering β. For this case, even further from quasi-
equilibrium, the jets are still relatively steady, but the
Rhines scale has changed sufficiently that now only two
jets fit in the domain. This is consistent with the values
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FIG. 2. Hovmöller diagrams of zonal mean relative vorticity
versus time from DNS simulations. (a) Parameters as for
Fig. 1 with Rβ = 2.12; (b) Parameters as for (a) but β = 8
and Rβ = 1.98; here LR is increased by a factor 3/2 from
that in (a); (c) Parameters as for (a) but κ = 10−2 and Rβ =
1.24; here LR is decreased by a factor 3/5 from that in (a).
A running time-average commences at the midpoint of each
diagram.

of LR given in the figure caption. For Fig. 2(c) Rβ has
been reduced to Rβ = 1.24, achieved by increasing the
friction. Here the jets meander significantly and merge
showing a large degree of spatiotemporal variation. In
this respect they have the characteristics of observations
and simulations of oceanic jets [27, 28]. At different times
there appears either four or five jets, but on average there
are five jets. Because of the temporal variability, the time
average of the jet velocity is much smaller than the in-
stantaneous jet speeds.

Expansion of equal-time cumulants at order CE2 is
straightforward for Eq. 1. Let r = (x, y) and r′ = (x′, y′)
and adopt a Reynolds decomposition by setting ζ(r) =
〈ζ(r)〉 + ζ ′(r), where the angle brackets imply either an
ensemble average or an average over longitude (x). We
define the first cumulants as cζ = 〈ζ(r)〉 = cζ(y) and
cψ(r) = 〈ψ(r)〉 = cψ(y) where the relationship between
these is given by cζ = ∂2

yycψ. We may then define the
second cumulants as follows: cζζ(r, r

′) = 〈ζ ′(r)ζ ′(r′)〉
and note that for this system cζζ depends on the two
local latitudes and the difference between the longitudes
ξ = x− x′, i.e. cζζ(r, r

′) = cζζ(y, y
′, ξ) [12]. Correspond-

ing definitions arise for the derived second cumulants cψζ
and cζψ, i.e. cψζ(r, r

′) = 〈ψ′(r)ζ ′(r′)〉 = cψζ(y, y
′, ξ)

and similarly for cζψ(y, y′, ξ). With these definitions the
equations for cumulant hierarchy, truncated at second

FIG. 3. Hovmöller diagrams of relative vorticity from CE2.
(a) Parameters as for Fig. 2(a). (b) Parameters as for
Fig. 2(c).

order, are

∂tcζ = − (∂y + ∂y′) ∂ξcψζ |ξ→0
y→y′ − κcζ + ν∂2

yycζ . (3)

∂tcζζ = ∂ycψ∂ξcζζ − ∂y(cζ(y)− βy)∂ξcψζ

− ∂y′cψ∂ξcζζ + ∂y′(cζ(y
′)− βy′)∂ξcζψ

+ ν
(
∇2 +∇′2

)
cζζ − 2κcζζ + Γ. (4)

Here Γ is the covariance matrix of the stochastic forc-
ing that enters into equation 4 as a deterministic source
term localised at the same wavenumbers as for the DNS
[5] and with an amplitude aΓ that is given aΓ = rta

2
η.

Eqs. 3 and 4 constitute a realizable closure and in the
absence of damping and forcing, conserve linear momen-
tum, energy, and enstrophy. Eqs. 3 and 4 are integrated
forward in time using a pseudo-spectral integrating fac-
tor/Adams Bashforth numerical scheme. The integra-
tions were performed at a typical resolution of 16× 128.
Restricting |kx| < 16 does not amount to a further ap-
proximation beyond CE2, because, for this problem, at
level CE2 only modes with zonal wavenumbers less than
those of the stochastic forcing are excited.

Recall that for Rβ large the system is in quasi-
equilibrium, dominated by strong jets, and CE2 should
provide an accurate representation of the statistics of
the fluid flows. A typical evolution of the cumulant sys-
tem is shown in Fig. 3(a). After some initial transients
where jets are driven with a relatively small latitudinal
extent, broader jets emerge via a series of jet mergings.
Similar jet-merging behaviour has been observed both
in DNS and in the strong jet simulations of SSST [10],
and also in the weakly nonlinear description of zonal jets
[29]. The system eventually reaches a statistically steady
state, represented by a simple fixed point of the cumulant
equations. The calculations were repeated at a range of
Rβ and compared with the (zonal and time averages of
the) DNS solutions described earlier. Fig. 4 shows com-
parisons of the zonal velocity in the jet from DNS aver-
aged over both x and time with that achieved from DSS
at CE2 for Rβ = 2.12 and Rβ = 1.98. The agreement
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FIG. 4. Comparison of mean zonal velocity from DNS (dashed
lines) and CE2 (solid lines) for parameters as in Figs. 2(a),
(b), and (c) for which Rβ = 2.12, 1.98, and 1.24.

FIG. 5. Second cumulant cζζ as calculated from DNS (left)
with Rβ = 2.12 and the corresponding CE2 solution (right).
Cross correlation with respect to a test point located at
(π, 4.7).

in the first cumulant at these levels of disequilibrium is
good; CE2 reproduces both the correct number of jets
and their strength; although CE2 slightly overestimates
the average jet strength — a characteristic in common
with quasi-linear DNS of jets [6]. However close exami-
nation of the second cumulant reveals that CE2 struggles
to reproduce the cross-correlation patterns (or telecon-
nections) from DNS for these parameters. The left panel
of Fig. 5 shows the second cumulant as accumulated from
the DNS solution of Fig. 1. The figure shows the cross-
correlation of the vorticity statistics with respect to a test
point. The second cumulant is localised in latitude, with
some recurrent correlations occurring on the jet spacing,
whilst the structure in longitude contributions both from
wavenumber kx = 1 and from the scale of the forcing.
Examination of the spatio-temporal dynamics of the sys-
tem indicates that the kx = 1 contribution arises from
a domain-scale meandering of the jet, termed “satellite
modes” by Ref. [30]. The right panel of Fig. 5 shows that
CE2 reproduces the contributions to the second cumulant
at the longitudinal scales of the forcing, but is incapable
of reproducing the contribution from the satellite modes,
when the system is this far from equilibrium. Interest-
ingly these modes are also absent from quasilinear DNS
calculations [6], which would seem to indicate that they
arise as a result of eddy + eddy → eddy interactions.

For systems driven even further from equilibrium, CE2
struggles not only to reproduce all the structures of the
second cumulant, but also the number of jets and their
strength. As noted earlier, for smaller Rβ the jets are
more intermittent and meander more. Although zonal
averages can be calculated, the constant meandering of
the jets in latitude reduces the average jet strength. CE2
eventually settles down to a fixed point though we do not
believe this to be a unique solution. The solution overes-
timates the strength of the jets and therefore the Rhines
scale associated with them; hence CE2 has a tendency to
underestimate the number of jets as shown in Figs. 3(b)
and 4(c).

This paper has demonstrated that DSS as approxi-
mated by CE2 performs well in directly calculating the
statistics for β-plane turbulence in quasi-equilibrium. It
confirms the earlier result [5, 6] that zonal jets do not
require an inverse cascade to be driven, but can arise
as the result of Reynolds stresses alone. However, and
importantly, we have shown that as the system is re-
moved further from equilibrium by reducing the zonos-
trophy parameter Rβ , CE2 can significantly overestimate
jet strengths and predict the incorrect number of jets.
We hypothesise that for such systems higher order cu-
mulant expansions are required. If truncated at third
order (CE3) the cumulant expansion includes eddy +
eddy → eddy interactions and should perform better in
predicting statistics for out-of equilibrium systems. The
potential utility of CE3 has been demonstrated for the
problems of an isolated vortex [31] and fluid flow relax-
ing to a prescribed jet [32]. We conclude by noting that
although we have stressed the limitations of CE2, we be-
lieve that the local β-plane system driven stochastically
is one of the stiffest tests of this method; it is very diffi-
cult in both DNS and DSS to reach the quasi-equilibrium
limit; although progress may be achieved utilising DSS
implementing semi-implicit timestepping. Nevertheless
CE2 provides a good qualitative description of the first
cumulant for systems where the important competing ef-
fects arise from inhomogeneity, anisotropy, and turbulent
fluctuations about a non-trivial basic state.
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