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We propose the following model equation:
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= f (x, us)

that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures.
The equation is given on the half-line, x < 0, and the shock is located at x = 0 for any t ≥ 0.
Here, us (t) is the shock state and the source term f is taken to mimic the chemical energy release
in detonations. This equation retains the essential physics needed to reproduce many properties
of detonations in gaseous reactive mixtures: steady traveling-wave solutions, instability of such
solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in
shock waves by a scalar first-order partial differential equation. The chaos arises in the equation
thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing
term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

PACS numbers: 02.30.Jr, 47.10.ab, 47.40.Rs, 05.45.-a, 47.40.Nm, 47.70.Fw

Shock waves arise in a wide range of physical phenom-
ena: gas dynamics, shallow-water flows, supernovae, stel-
lar winds, traffic flows, quantum fluids, and many others
[2, 7, 20]. The theory of shock waves has a rich history
beginning with the fundamental contributions by Rie-
mann in the mid-19th century. Nevertheless, due to the
complexity of the underlying governing equations, many
open questions remain, especially in problems involving
dynamical interactions of shock waves with magnetic and
gravitational fields, chemical reactions, and radiation.

Our focus in this Letter is on a fascinating feature
of shock-wave propagation in chemically reacting media:
shock-wave chaos, in which the shock speed oscillates
chaotically. This phenomenon occurs in gaseous detona-
tions as seen in numerical simulations of reactive Euler
equations [8, 15]. In detonations, a shock wave propa-
gates in a combustible medium (for example, a gaseous
mixture of hydrogen and air), ignites the medium, and is
sustained by the energy released in the burning mixture.
During the chemical reaction, the mixture temperature
rapidly rises and, because the gas expansion is slow, the
resulting pressure build-up gives rise to strong compres-
sion waves. These waves can reach the shock because
the flow immediately behind the shock is subsonic. The
detonation-shock propagation is sustained by those pres-
sure waves in the reaction zone that reach the shock.

The classical model of detonation, pioneered by
Zel’dovich, von Neumann, and Döring (ZND model,
[7, 10]), is based on a system of reactive Euler equa-

tions in one dimension, that consists of equations for the
balance of mass, momentum, energy, and the fuel con-
centration. This system describes four families of waves:
one acoustic and two material-entropic waves that prop-
agate away from the shock, and one acoustic wave that
propagates toward the shock. These waves interact non-
linearly with each other and with the shock and can am-
plify due to the chemical energy release. It is these in-
teractions that are responsible for the detonation-wave
dynamics wherein the shock oscillates in a periodic or
chaotic fashion [15]. The main questions in understand-
ing the physical mechanism of these oscillations are: How
does this wave amplification occur, and which wave inter-
actions are responsible for the chaos? Do all four families
of waves in the reactive Euler equations have to be ac-
counted for or is there a simpler mechanism?

These difficult questions are still largely open. How-
ever, the model that we propose here suggests that the
mechanism is in fact rather simple. We show that the
complex dynamics of one-dimensional detonations are
captured by considering only two wave families: very fast
waves reflecting off the shock into the reaction zone and
slow waves moving from the reaction zone toward the
shock; moreover, the fast waves can be assumed to be in-
finitely fast [22] − the model still retains all the essential
features. The infinite-speed assumption leads to a single
equation of a very unusual type: a nonlocal first-order
hyperbolic partial differential equation. Its solutions pro-
vide a strong indication that there exists a simple mecha-
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nism hidden in the Euler equations that is responsible for
the complex behavior of reactive shocks in gas dynamics.

Before introducing our model, we recall that Burgers
[1] proposed his equation, ut + uux = ǫuxx (subscripts
t and x indicate partial derivatives and ǫ ≥ 0 is a vis-
cosity coefficient) in the hope of capturing the essential
nature of turbulence with a simple and tractable model.
Following a similar idea, Fickett [4, 5] and Majda [13]
introduced simple analog models for detonations in the
hope of gaining some insight into their behavior. Fick-
ett’s model is a modification of the Burgers’ equation and
takes the form:

ut +
1

2
(u2 + qλ)x = 0, λt = ω(λ, u), (1)

where u is the primary unknown mimicking density, tem-
perature, or pressure, ω is a given chemical rate function,
and q > 0 is a constant measuring the total chemical en-
ergy release (i.e., qλ is a fraction of energy released at
any given time). The chemistry here is represented by
the reaction reactants → products, with λ measuring
a normalized concentration of the reaction products; it
varies from λ = 0 at the shock to λ = 1 in the products.
Even though Fickett’s model has been shown to repro-
duce some of the features of detonations [4–6], the key
unstable character of detonations was not seen in this
model until Radulescu and Tang [16] extended it to a
two-step chemical reaction with an inert induction zone
followed by an energy-releasing reaction zone.

To underscore the physical origins of our model, we
show now that it is closely related to the theory of Ros-
ales and Majda [17], which is (in contrast to the ad hoc

models of Fickett and Majda) based on weakly nonlin-
ear asymptotic approximations of the Euler equations.
In [17], the following reduced system for the evolution of
detonations was derived:

uτ +
1

2

(

u2
)

ξ
= q λξ, λξ = ω (λ, u) , (2)

where τ and ξ are time and space, respectively, and u
is a temperature-like variable. The reaction rate ω was
chosen to be of the ignition-temperature type with ω > 0
if u > 0 and ω = 0 if u < 0. The validity of the model
derivation is, however, not restricted to this type of rate
function. The key difference between the Fickett-Majda
models and (2) is that the rate equation in (2) involves
the space derivative as opposed to the time derivative in
(1). Physically, this means that in (1), the rate equation
does not propagate any waves, while in (2), waves are
propagated instantaneously by the second equation.

For system (2), consider a shock at ξ = ξs(τ), moving
into a uniform state ahead of the shock, where u = 0
and where there is no reaction, ω = 0. Assume that the
reaction is triggered by the shock, and it is such that:
at ξ < ξs, ω depends only on the shock state, us =
us(τ) = the value of u immediately behind the shock,

i.e. ω = ω(λ, us). This assumption is sometimes made
in modeling condensed-phase explosives [5]. The idea is
that the reaction rate is mostly determined by how hard
the shock hits a fluid element. Then, the rate equation
in (2) can be integrated to yield λ as a function of ξ and
us. Hence, the first equation in (2) takes the form

uτ +
1

2

(

u2
)

ξ
= f (ξ − ξs, us) (3)

where f = q λξ vanishes for ξ > ξs. The shock speed,
V = dξ/dτ , follows from the Rankine-Hugoniot shock
condition [2], −V [u] + 1

2

[

u2
]

= 0, where the brackets
[∗] denote the jump of the enclosed quantity across the
shock (the value behind minus the value ahead). Since
[u] = us and [u2] = u2

s, it follows that V = us/2.
Next, we change coordinates to the shock-fixed frame,

introducing x = ξ− ξs (t) and t = τ . Then, (3) yields the
following non-local partial differential equation:

ut +
1
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(

u2 − uus

)

x
= f (x, us) , (4)

which must be solved in x ≤ 0 and t ≥ 0. Here,
us (t) = u (0, t), the boundary value of the solution, is
not prescribed a priori, but follows by solving (4), as
explained below. The function f is chosen such that it
mimics the typical behavior of the reaction rate in re-
active Euler equations, with a maximum some distance
away from the shock (see, e.g. [7], p. 47). The loca-
tion of this maximum is chosen to depend sensitively on
the shock state−a common feature in the reactive Euler
equations, where the reaction rate depends exponentially
on the temperature as ω ∼ exp(−E/RT ), with E the ac-
tivation energy and R the universal gas constant.

Equation (4) is thus a model for the reaction zone of a
detonation in coordinates attached to the leading shock.
By construction, this shock is located at x = 0 at any
time. We also assume that the shock satisfies the usual
Lax entropy conditions [11], such that the characteristics
from both sides of the shock converge on the shock. In
characteristic form, (4) is written as: du/dt = f (x, us)
along dx/dt = u − us/2. Assuming that u = 0 ahead
of the shock, it follows that us > 0 guarantees the Lax
conditions. Importantly, no boundary condition at x = 0
is needed, as the characteristics from x < 0 are outgoing,
i.e. dx/dt|x=0− = (u− us/2)x=0−

= us/2 > 0. Note
that us measures the shock strength, because us = [u].

The most unusual mathematical feature of (4) is that it
contains the boundary value of the unknown, us (t). This
is in fact the main reason for the observed complexity of
the solutions and has a simple physical interpretation:
the boundary information from x = 0 is propagated in-

stantaneously throughout the solution domain, x < 0,
while there is a finite-speed influence propagating from
the reaction zone back toward the shock along the char-
acteristics of (4). In the Euler equations, this situation
occurs in a weakly nonlinear reactive shock wave, where
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the flow behind the shock is nearly sonic relative to the
shock [17]. One family of acoustic characteristics is then
nearly parallel to the shock, representing the slow part
of the wave moving toward the shock. The other waves
move away from the shock and comprise the influence of
the shock on the whole post-shock flow. This occurs on a
much faster time scale than the information flow toward
the shock. At leading order, in the limit considered in
[17], this yields an instantaneous effect.

Returning to the analysis of (4), we can easily obtain
its steady-state solution, u0 (x), by solving

1

2

(

u2

0
− u0u0s

)′

= f (x, u0s) , (5)

where the prime denotes the derivative with respect to x
and the subscript 0 denotes the steady state. The so-

lution is u0 (x) = u0s/2 +
√

u2

0s/4 + 2
´ x

0
f (y, u0s) dy.

The choice of the steady-state shock strength, u0s =

2
√

2
´

0

−∞
f (y, u0s) dy, corresponds to the Chapman-

Jouguet case in detonation theory [7], since then the
characteristic speed at x = −∞ is u0 (−∞)− u0s/2 = 0,
indicating that the sonic point is reached at x = −∞.
The steady solution can now be written as

u0 (x) =
u0s

2
+

√

2

ˆ x

−∞

f (y, u0s) dy. (6)

Clearly, for u0 (x) to be real and bounded, we must
require that 0 ≤

´ x

−∞
f (y, u0s) dy < ∞ for any x ∈

(−∞, 0]. This constraint means that the source term
must have finite energy and must be positive overall in
order for the solutions to make sense. Physically, this
also means that the energy must be released rather than
consumed to sustain the shock.

Now, we explore the fully nonlinear and unsteady so-
lutions of (4) for the particular case when

f =
q

2

1√
4πβ

exp

[

− (x− xf (us))
2

4β

]

. (7)

We choose xf = −k (u0s/us)
α to make the position of the

peak of f to be a sensitive function of us; here, q > 0,
k > 0, α ≥ 0, and β > 0 are parameters. Next, we
rescale the variables as follows: u by u0s, so that the
dimensionless steady-state shock strength is 1, length by
l = k, and time by τ = l/u0s. From (6), putting all
the dimensionless variables in and rescaling β by l2, we
obtain (keeping the same notation for the dimensionless
variables and parameters)

u0 (x) =
1

2

[

1 +

√

1 + erf
(

(x+ 1) /2
√
β
)

1 + erf
(

1/2
√
β
)

]

, (8)

where erf (x) is the error function. The dimensionless
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Figure 1: The long-time spatio-temporal profiles of u(x, t)
(color) for the periodic solution at α = 4.7 (left) and the
chaotic solution at α = 5.1 (right); β = 0.1 in both cases. The
white curves are the characteristics of (9) given by ẋ = u− us
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Figure 2: The period-one and period-two limit cycles in the
plane of the shock strength us (t) vs u̇s at two different values
of α and β = 0.1.

form of (4) is

ut +
1

2

(

u2 − uus

)

x
= a exp

[

− (x+ u−α
s )

2

4β

]

, (9)

where a = 1/
[

4
√
4πβ

(

1 + erf
(

1/2
√
β
))]

. Equation (9)
now contains only two parameters: α, reflecting the
shock-state sensitivity of the source function, f (an ana-
log of the activation energy in detonations), and β, re-
flecting the width of f (an analog of the ratio between
the reaction-zone length and the induction-zone length).

In the computations below, we use the numerical al-
gorithm of [8], which is fifth order accurate in space and
third order accurate in time. Our domain has length 10
with 3000 uniformly spaced grid points on it. We find
this domain to be sufficiently large for the present calcu-
lations, but larger domains may be required for other pa-
rameters. We note, however, that due to the rapid decay
of f(x, us) as x → −∞, all the dynamics of the solutions
are localized in the region close to the shock, x = 0. This
is shown in Fig. 1, wherein the characteristics are seen to
be almost vertical (on average) far from the shock, indi-
cating that the far-field influence on the shock dynamics
rapidly diminishes with the distance from the shock. The
precise nature of the solutions shown in Fig. 1 (periodic
at α = 4.7 and chaotic at α = 5.1) is confirmed in Fig. 2
(left) for the limit cycle at α = 4.7 and Figs. 3-5 for the
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Figure 3: The long-time values of the local maxima, umax

s , of
the shock strength as a function of α.

chaotic solution at α = 5.1.
We fix β = 0.1 and vary α in all the calculations.

Our simulations start with the steady-state solution per-
turbed by numerical noise. Below the critical value
αc ≈ 4.04, the solution is found to be stable. This critical
value is also in agreement with a linear stability analysis
of the problem (to be reported elsewhere). At α = αc,
a Hopf bifurcation occurs and a limit cycle is born (the
shock strength us oscillates periodically in time). As α is
increased from α1 = 4.70 to α = 4.85, a period doubling
occurs, see Fig. 2. Remarkably, as α is increased fur-
ther, we observe a sequence of period-doubling bifurca-
tions that leads to chaotic solutions at α that are slightly
larger than 5, as seen in Fig. 3. The onset of chaos ap-
parently follows the same scenario as in the logistic map
[14, 19]. The bifurcation diagram in Fig. 3 was computed
by solving (9) until t = 6000 for the range of α from 3.9
to 5.2, with an increment of 0.005. For each α, we found
the maxima of us (t) between t = 5000 and t = 6000 and
plotted them in the figure. Based on a sequence of three
period doublings, we estimated the Feigenbaum constant,
δ [3], to be about 4.5. This is in rough agreement with
the well-known value of δ = 4.669... for the logistic map,
as well as that found for detonations [8, 15, 16, 19].
Figure 4 shows the chaotic attractor at α = 5.1, in the
(us, u̇s, üs) space (the dots indicate the time derivatives).
Its resemblance to the Rössler attractor [18] is evident.
Interestingly, when plotting the local maxima of us ver-
sus their prior values (i.e., the Lorenz map [12], see Fig.
5), the data fall (almost) on a curve. The curve also
resembles the one for the Rössler attractor. These obser-
vations suggest that the shock-wave chaos arising from
(4) is controlled by a low-dimensional process similar to
that of a simple one-dimensional map−just as it is the
case with the Lorenz and Rössler attractors [19].

The present model and [16] provide examples demon-
strating that the models of Fickett [4] and Majda [13] and
the theory of Rosales and Majda [17] do, in fact, contain
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Figure 4: The chaotic attractor in the (us, u̇s, üs)-space at
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Figure 5: The Lorenz map showing consecutive local max-
ima (un

s , un+1
s ) of the shock strength, us (t), over large times

(from t = 3000 to t = 6000) for the chaotic case at α = 5.1.

the complicated instabilities that they were introduced
to capture. Here and in [16], the underlying physics of
the detonation phenomenon are faithfully represented,
which is the main reason for the observed rich dynamics.
Our results contrast a long-held belief that such simpli-
fied models may not possess the necessary complexity
and may only exhibit stable shocks (see [21] and refer-
ences therein for related mathematical results). Stability
is indeed the case when the reaction rates lack sufficient
sensitivity to the shock state. However, once such sen-
sitivity is present and the feedback mechanism between
the shock and the reaction zone is true to the physics of
detonation, these simplified models do possess intricate
dynamics akin to that of real detonations.

The difficulty of obtaining a reduced theory of detona-
tion has even led to speculating an (admittedly "overpes-
simistic") possibility that “the phenomenon of detonation
structures belongs to the «no theory» category because
it might not be reducible to less than the compressible
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reactive Euler equations” ([9], p. 665). Our model is
strong evidence that this is not so. Detonation can be
described by theories that are simpler than the reactive
Euler equations; in fact, they can be as simple as one
scalar equation. We hope that future research in this
direction will further demonstrate the richness and rele-
vance of such simplified models, especially going beyond
the simplest one-dimensional model introduced in this
work, toward many complex problems in detonation and
shock wave physics.
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