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One fascinating way of revealing the quantum nonlocality is the all-versus-nothing test due to
Greenberger, Horne, and Zeilinger (GHZ) known as GHZ paradox. So far genuine multipartite and
multilevel GHZ paradoxes are known to exist only in systems containing an odd number of particles.
Here we shall construct GHZ paradoxes for an arbitrary number (greater than 3) of particles with
the help of qudit graph states on a special kind of graphs, called as GHZ graphs. Furthermore, based
on the GHZ paradox arising from a GHZ graph, we derive a Bell inequality with two d-outcome
observables for each observer, whose maximal violation attained by the corresponding graph state,
and a Kochen-Specker inequality testing the quantum contextuality in a state-independent fashion.

Local realism cannot make quantum theory complete,
as argued by Einstein, Podolsky and Rosen (EPR) based
on the belief that every element of physical reality must
have a counterpart in a complete theory [1]. Accord-
ing to them, an element of reality is corresponding to
a physical quantity whose value can be predicted with
certainty without in any way disturbing a system. No
disturbance is ensured by the locality, i.e., the assump-
tion that the result of a measurement cannot be affected
by any spacelike separated events. The clashing between
the local realism and quantum mechanics as revealed
by several no-go theorems such as Bell’s theorem [2],
Greenberger-Horne-Zeilinger (GHZ) theorem [3–5], and
Kochen-Specker (KS) theorem [6], shows that quantum
mechanical description of our world is nonlocal, or more
generally contextual. This fascinating and fundamen-
tal quantum feature of nonlocality and contextuality has
been verified in experiments on various physical systems,
e.g., [7], via the detection of violations of Bell inequalities
and KS inequalities [8–10].

Among these genius approaches, GHZ theorem [3, 4]
provides us an “all-versus-nothing” [11] test of a stronger
type nonlocality, referred to as GHZ nonlocality, than
Bell’s nonlocality. This is a state-dependent argu-
ment: because of the perfect correlations in some spe-
cial state called as GHZ state, e.g., a 3-qubit GHZ state
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This elegant presentation of GHZ paradox for 3 qubits
is due to Mermin [5] soon after its first discovery for a
4-qubit GHZ state [3] and has already been verified ex-
perimentally [12]. Although originally the GHZ argu-
ment is state-dependent, it was found recently that any
GHZ paradox can give rise to a KS inequality for a state-
independent test of quantum contextuality [8]. In addi-
tion to its fundamental role played in our understanding
of quantum nonlocality and contexuality, GHZ paradox
also finds numerous applications such in the quantum
protocols for reducing communication complexity [13]
and for secret sharing [14].

Compared to the bipartite and two-level case, mul-
tipartite and multilevel nonlocality or entanglement is
poorly understood. In some quantum informational tasks
such as quantum cryptography the usage of multidimen-
sional systems offers advantages such as an increased level
of tolerance to noise at a given level of security and a
higher flux of information compared to the two dimen-
sional case[15]. Thus, it is crucial to investigate the rel-
evant physical properties from some subclasses of these
systems, e.g., GHZ nonlocality from a special kind of
qudit states. Earlier efforts [16, 17] to generalize GHZ
paradoxes to multidimensional and multilevel systems
can be reduced either to the qubit cases or to fewer par-
ticle cases, except the cases of n = 4j + 3 for qubits
[17]. Genuine multipartite multilevel GHZ paradoxes
were first found by Cerf etal. for (d + 1)-partite d-level
systems with d being even [18]. An unconventional ap-
proach by using concurrent observables, not commuting
yet having a common eigenstate, is proposed by Lee et al
to construct GHZ paradox for the GHZ states of an odd
number of particles [19]. Also a GHZ-like arguments (all-
versus-something) is proposed by Kaszlikowski et al for
d-partite d-level systems [20], in which concurrent observ-
ables have been used implicitly. Later DiVincenzo and
Peres [21] found out that not only GHZ states can exhibit
GHZ paradox but also those code words, which are one
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kind of multipartite entangled states used in quantum er-
ror corrections [22], can exhibit GHZ nonlocality. But so
far genuine multipartite and multilevel GHZ paradoxes
for an even number of particles are still missing.

It turns out that GHZ states as well as code words
from stabilizer codes [23] are graph states [24] which are
essential resources for the one-way computing [25] and
also provide an efficient construction of quantum error-
correcting codes [26]. It is thus natural to take advan-
tages of the perfect correlations in graph states for the
constructions of GHZ paradoxes. In this Letter we shall
identify those graphs, called as GHZ graphs, whose corre-
sponding graph states lead to genuine multipartite mul-
tilevel GHZ paradoxes. Furthermore we derive a Bell in-
equality for multipartite and multilevel systems as well as
a state-independent KS inequality for every GHZ graph.

As a graph state for qubits is related to a simple graph,
a non-binary graph state [27–29] is associated with a
weighted graph. Let Zd = {0, 1 . . . , d−1} denote the ring
with addition modulo d. A Zd-weighted graph G = (V,Γ)
is composed of a set V of n vertices and a set of weighted
edges specified by the adjacency matrix Γ, a symmetric
n × n matrix with zero diagonal entries and the matrix
element Γuv ∈ Zd denoting the weight of the edge con-
necting the vertices u and v. A graph is connected if for
any pair of vertices u, v there exists a finite number of
vertices {vi}Ki=0 such that

∏K−1
i=0 Γvivi+1

6= 0 with u = v0

and v = vK .
We denote by Dv the degree of vertex v ∈ V which is

the sum of the weights of all the edges connecting to v
and by W the total weight of G which is the sum of the
weights of all the edges. Explicitly we have

Dv =
∑
u∈V

Γuv (v ∈ V ), W =
1

2

∑
u,v∈V

Γuv. (1)

A GHZ graph is a connected Zd-weighted graph satisfying
i) the degree of each vertex is divisible by d, i.e., Dv ≡
0 mod d, while ii) the total weight is NOT divisible by
d, i.e., W 6≡ 0 mod d. From these two conditions it
follows immediately that GHZ graph does not exist in
odd dimensions and ωW = −1 where ω = ei

2π
d . In fact

from the first condition, there is an integer tv such that
Dv = dtv for each v ∈ V , and the fact that the total
weight W = dt/2 with t =

∑
v∈V tv is an integer, since

Γ is symmetric, it follows that if d is odd then t must be
even and thus W is divisible by d. Furthermore, in even
dimensions, the total weight W is not divisible by d if
and only if t is odd and thus ωW = (−1)t = −1. In what
follows we shall always assume d to be even. A GHZ
graph is called as primary if for each vertex a ∈ V there
exists a pair of vertices b, c such that Γab and Γac are
coprime and weakly primary if there exist three vertices
a, b, c ∈ V such that Γab is coprime with Γac.

In the case of d = 2 a GHZ graph has an odd num-
ber of edges and every vertex has an even number of
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FIG. 1: Examples of GHZ graphs. Unlabeled thin black or red
edges have weight 1 or d − 1, respectively. All possible GHZ
graphs on 3 and 4 vertices are shown in (I) and (II), where
a′ = d

2
+ a, b′ = d

2
+ b, and c′ = d

2
+ c with a + b + c = d/2.

A GHZ graph on 5 vertices is shown in (III) where the thick
red edges have weight d/2 − 1. In (IV) and (V) two primary
GHZ graphs on 2k + 4 and 2k + 5 vertices (k ≥ 1) are shown.

neighbors. All GHZ graphs for d = 2 are primary. For
examples, a loop graph with an odd number of vertices
and a complete graph with 4j+3 (j ≥ 0) vertices are pos-
sible GHZ graphs. There is only a single GHZ graph on 3
vertices as shown in Fig.1(I) and it is clear that it is not
weakly primary if d > 2. In the case of n = 4 all possible
GHZ graphs are shown in Fig.1(II) with weights satisfy-
ing a+b+c = d/2. If d = 4k then d/2±1 = 2k±1 are co-
prime and thus, by choosing, e.g., a = 1, c = 1, we obtain
a primary GHZ graph. If d = 4k + 2 then there always
exists a vertex with all edges having even weights, since
d/2 is odd, so that only a weakly primary GHZ graph
exists in this case. Examples of primary GHZ graphs
for arbitrary n ≥ 5 and even dimensions are shown in
Fig.1(III-V). The primary GHZ graph on 5 vertices as
shown in Fig.1(III) can be generalized to any odd num-
ber of vertices.

Consider a system of n particles each of which has d
energy levels, a qudit for short, and label them with V .
Let {|s〉v|s ∈ Zd} be the computational basis for qudit
v ∈ V and {|s〉|s ∈ ZVd } is a basis for n qudits where ZVd
is the set of all n-dimensional vectors s = (s1, s2, . . . , sn)
with components sv ∈ Zd for all v ∈ V . To any weighted
graph G = (V,Γ) on |V | = n vertices we can associate
with a qudit graph state

|Γ〉 =
1

d
n
2

∑
s∈ZVd

ω
1
2 s·Γ·s|s〉, (2)

which is also the unique joint +1 eigenstate of n com-
muting vertex stabilizers

gv = Xv

∏
u∈V

ZΓuv
u , (3)
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i.e, gv|Γ〉 = |Γ〉 for all v ∈ V . Here we have
introduced the generalized bit shift operator Xv =∑
s∈Zd |(s + 1) mod d〉〈s|v and phase shift operators

Zv =
∑
s∈Zd ω

s|s〉〈s|v for each qudit v ∈ V . It is easy to

check that Xd
v = Zdv = I and ZvXv = ωXvZv. Our main

result reads:
Theorem For each (weakly) primary GHZ graph G =

(V,Γ) on |V | = n vertices, with weights taken values in
Zd, the graph state |Γ〉 provides a (weakly) genuine n-
partite d-level GHZ paradox.

Before embarking on the proof we should clarify what
we mean by genuine n-partite and d-level and give an ex-
ample. According to [18] a GHZ paradox, formulated via
a set of commuting observables, is said to be genuinely
n-partite if one cannot reduce the number of parties and
still have a Mermin-GHZ paradox. A GHZ paradox is
(weakly) genuine d-level if one cannot reduce the dimen-
sionality of the Hilbert space of (all) any one of the par-
ties to less than d and still have a paradox.

As an example let us consider the GHZ graph as shown
in Fig.1(II) in the case of n = 4 and the following 5
commuting observables that stabilize the corresponding
graph state
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which provide us a GHZ paradox. Measurement of the
product of the operators in each row gives a certainty
result 1 or −1 as listed in the right column of Eq.(4) by
quantum mechanics. With analogue to EPR’s argument,
the result mx
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The contradiction lies in the fact that all five equations in
Eq.(5) cannot hold simultaneously. In the case of d = 4 if
we choose a = b = 1 and c′ = 2 with a′ = b′ = 3 and c = 0
then the GHZ graph is primary and the corresponding
GHZ paradox is genuine 4-partite and 4-level. In the case
of d = 6 we can choose a = b = c = 1 and a′ = b′ = c′ = 4
such that for the second qudit there exists a projection to

a qutrit by identification Z2 for d = 6 with Z for d = 3.
Thus it provides an example of weakly genuine 6-level
GHZ paradox that can be regarded as GHZ paradox on
a hybrid system of three 6-level system plus a qutrit.
Proof. Let G = (V,Γ) be a GHZ graph, i.e., the degree

of each vertex Da is divisible by d and the total weight W
satisfies ωW = −1. For each qudit v ∈ V we measure two
unitary observables Xv and Zv with outcomes assigned
to values mx

v ,m
z
v ∈ {ωt|t ∈ Zd}, respectively. First of

all these values are elements of reality because of the
perfect correlations gv|Γ〉 = |Γ〉 (v ∈ V ). In any local, or
non-contextual, hidden variable models these values are
independent of which observables might be measured by
other observers. Furthermore, they must satisfy the same
algebraic rules, e.g., the product rule, as their quantum
counterparts do. For example from the definition of the
vertex stabilizer gv it follows

Mv := mx
v

∏
u∈V

(mz
u)Γuv = 1 (6)

for each v ∈ V . On the other hand from the constraint
XV |Γ〉 = −|Γ〉, because of the identity∏

a∈V
ga = ωWXV

∏
a∈V

ZDaa = −XV , (7)

it follows that
∏
v∈V m

x
v = −1 which is impossible be-

cause
∏
v∈V Mv =

∏
v∈V m

x
v , in which the fact that Dv

is divisible by d has been used.
By definition a GHZ graph is a connected graph and

thus for each partition of n observers into two groups
some of n+ 1 unitary observables will not be commuting
when restricting to either one of two groups. Therefore
the GHZ paradox for |Γ〉 is a genuine n-partite. Further-
more if the GHZ graph is primary then each vertex is
attached to at least one pair of edges of coprime weights.
If there were a projection to lower dimensions for a qu-
dit, some eigenstates of Xa and those of ZΓab

a and ZΓac
a

are orthogonal. This is impossible because firstly there
always exist p, q ∈ Zd such that pΓab + qΓac = 1 mod d
and secondly Xv and Zv are two complementary observ-
ables whose eigenstates cannot have a zero overlap, which
is the case if the dimensionality can be reduced. ]

Some remarks are in order. Firstly for we have con-
structed genuine n-partite and d-level GHZ paradox with
n ≥ 5 can be even. Secondly any state that is related
with GHZ graph states via local unitary transformations
exhibits also GHZ nonlocality. Thirdly, for a graph that
is not GHZ graph it is also possible to construct a GHZ
paradox for the graph state if the underlying graph con-
tains a GHZ subgraph. A subgraph H = (V ′,Γ′) of a
weighted graph G = (V,Γ) is also a Zd-weighted graph
with a vertex set given by V ′ ⊆ V and edges specified
by Γ′ab = Γab if a, b ∈ V ′. If furthermore the subgraph
is a GHZ graph we shall refer to it as a GHZ subgraph
of G. Suppose that the graph G contains a GHZ graph
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H = (V ′,Γ′) with |V ′| = m < n then the m + 1 observ-
ables gu with u ∈ V ′ and

∏
u∈V ′ gu yield a GHZ paradox

for the graph state |Γ〉. It is clear that it is only a genuine
m-partite GHZ paradox if the GHZ subgraph is primary.
For example the 4-qubit GHZ state is equivalent to the
graph state corresponding to the complete graph on 4
vertices, which contains a loop of length 3 as a GHZ
subgraph. In fact the original GHZ proof [4] revealed a
3-partite GHZ nonlocality using this GHZ subgraph.

As the first application we shall derive a Bell inequality
with two measurement settings for each observer with
the help of the GHZ paradox derived from a GHZ graph.
Consider two d-outcome measurements Av and Bv for
each observer v ∈ V and assign values in {ωt|t ∈ Zd} to
them (Bell-KS value assignment). For each GHZ graph
G = (V,Γ) we introduce a Bell operator as

BG =

d−1∑
k=1
k odd

2

d

(∑
v∈V

Akv
∏
u∈V

BkΓuv
u −

∏
v∈V

Akv

)
(8)

Taking into account the identity
∑d−1
k=0 ω

kl = dδl,0 for
arbitrary l ∈ Zd and denoting AV =

∏
v∈V Av and Nv =

Av
∏
u∈V B

Γuv
u for each v ∈ V , where δi,j is the standard

Kronecker delta symbol, we have

BG = δ−1,AV −δ1,AV +
∑
v∈V

(δ1,Nv − δ−1,Nv ) ≤ n−1. (9)

The inequality holds in any local realistic theory because
if there are n positive terms then there is necessarily a
negative term in BG: If Nv = 1 for every v ∈ V then it
holds AV = 1 which contributes a negative term; if Nv =
1 for all v ∈ V − {v0} and AV = −1 then it necessarily
holds Nv0 = −1 because AV =

∏
v∈V Nv. Furthermore

it is easy to see that BG ≤ n+1, which is attained by the
graph state |Γ〉 with 〈Γ|BG|Γ〉 = n+1 in which Av and Bv
are chosen to be Xv and Zv, respectively, for each v ∈ V .
In this case the quantum to classical ratio (n+1)/(n−1)
is a constant independent of the dimension, comparing
to that of [30].

Every GHZ paradox leads also to a proof of KS the-
orem. And any proof of KS theorem can be converted
to an experimentally testable inequality, called as KS in-
equality, a la Cabello [8]. As the second application we
consider the following KS inequality

1

2

〈
X†V ·

∏
v∈V

Xv +
∑
v∈V

g†v ·Xv

∏
u∈V

ZΓuv
u + h.c.

〉
c

−1

2

〈
X†V ·

∏
v∈V

gv + h.c.

〉
c

≤ Cn+1,d (10)

where, with λ = d
2(n+1) and θ = 2π/d, we have denoted

Cnd
n+ 1

= (λ−bλc) cosdλeθ+(1 + bλc − λ) cosbλcθ. (11)

Firstly, each term, e.g.,
〈
X†V ·

∏
v∈V gv

〉
c
, is the abbre-

viated form of the classical correlation of n + 1 observ-

ables, e.g.,
〈
X†V · g1 · g2 · ... · gn

〉
c
. Secondly, the upper

bound can be easily inferred from the Lemma proved be-
low. Thirdly, we have Cn+1,d < n+ 2 while the quantum
mechanical value of the left-hand-side of Eq.(10) equals
to n + 2 identically and therefore violates the above KS
inequality in a state-independent fashion.

In Summary, first of all we have identified a special
kind of graphs, called as GHZ graphs, whose correspond-
ing graph states give rise to GHZ paradoxes. Except for
the case n = 4 with d = 4k + 2 for which only weakly
genuine GHZ paradox is found we have derived genuine
n-partite and d-level GHZ paradoxes from qudit graph
states corresponding to GHZ graphs with n ≥ 4 and even
d being arbitrary. Second, as applications for each GHZ
graph we derive a Bell inequality with two d-outcome
observables for each observer whose maximal violation is
attained by the corresponding graph state as well as a
state-independent KS inequality that is satisfied by any
noncontextual hidden variable models. This would be
helpful to the analysis of multipartite contextuality or
multipartite nonlocality. It should be noted that GHZ
paradoxes may exist for those states that are equivalent
to the graph states under local Clifford (LC) transfor-
mations. However the conditions under which both two
GHZ paradoxes arising from two LC equivalent states
are genuine n-partite seem to lie out of the reach of cur-
rent paper. Besides, examples we analyzing here involve
only some special classes of graph states, so figuring out
other classes of graph states which are consistent with
our theorem are still meaningful as for a fixed parties
n, different graphs may have different robustness against
decoherence, which may help to design new quantum pro-
tocols for reducing communication complexity. Ironically
a genuine 4-partite GHZ paradox is still missing for the
original 4-qubit GHZ state.
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Lemma Let Ud = {θ, 2θ, . . . , dθ} with θ = 2π/d and
λ = d

2(n+1) and ~x = (x1, x2, . . . , xn) ∈ Rn be n real

variables and xs =
∑n
i=1 xi. We have

max
~x∈Und

{
f(~x) :=

n∑
i=1

cosxi − cos (xs)

}
= Cn,d. (12)

Specially, if n ≥ d/2, i.e., λ < 1, then Cnd = n + 1 −
d sin2 π

d and if d = 2(n + 1)l for some l, i.e., λ is an
integer, then Cnd = (n+ 1) cos π

n+1 .

Proof. The maximum of f(~x) over Rn is the largest

value on all local extremal points satisfying ∂f(~x)
∂xi

=
sinxs − sinxi = 0 (∀i). Let x1 = x then either xi =
ai = 2uiπ + x or xi = bi = (2ui + 1)π − x for all in-
tegers ui with i ≥ 2 since sinxi = sinx. Denote by m
the number of xi’s being equal to ai and k = n − m
the number of xi’s being equal to bi’s among {xi}ni=1.
Then from sinx = sin(kπ + (m − k)x) it follows either
a) x = xa with 2lπ + xa = kπ + (m− k)xa or b) x = xb
with (2l + 1)π − xb = kπ + (m − k)xb for all the in-
tegers l ≥ 0. At these extremal points we have either
f(~xa) = (m− k− 1) cosxa or f(~xb) = (m− k+ 1) cosxb.
If k ≥ 1 then m − k = n − 2k ≤ n − 2 and thus
f(~xa,b) ≤ n − 1. If k = 0 then f(~xl) = (n + 1) cosxl,
where ~xl = (xl, xl, . . . , xl) with xl = (2l + 1)π/(n + 1).
Since f(~x0) ≥ n−1 and f(~x0) ≥ f(~xl) the extremal point
~x0 leads to the largest value of f .

If λ is an integer then ~x0 ∈ Und and thus the global max-
imum f(~x0) is attainable and in this case f(~x0) = Cnd.
If λ is not an integer then the maximal value f(~x0) is
not attainable by any vector in Und . However its maxi-
mum must be attained at those vectors near one of those
extremal points that have the floors or ceilings of the
components of the extremal points. We consider at first
those vectors in Und near ~x0 that have a number m of
x+ = dλe θ and a number n −m of x− = bλcθ as com-
ponents with n ≥ m ≥ 0. On these vectors f(~x) assumes
values Fm = m cosx+ + (n−m) cosx−− cos(mθ+nx−).
Let ∆m = (Fm+1 − Fm)/(2 sin θ

2 ) and we have

∆m = sin
2nx− + (2m+ 1)θ

2
− sin

x− + x+

2
(13)

Since λ is not an integer we have 0 ≤ (x−+x+)/2 ≤ π/2.
In the case of d/2 > n we have nx−+mθ ≤ 2π+x− and
then ∆m ≥ 0 if m < δ := d/2− (n+1)bλc and ∆m ≤ 0 if
m > δ. As a result maxFm = Fδ = Cnd. If n ≥ d/2 then
x− = 0 and in this case ∆m ≥ 0 if m′u ≤ m ≤ mu with
m′u = ud or mu = (u+ 1/2)d− 1 and ∆m < 0 otherwise
for u ≥ 0 being integer. Thus the maximum value of Fm
must be taken on m′u or mu and obviously Fm0 ≥ Fmu
and Fm0 ≥ Fm′

u
for all u. As a result we have maxFm =

Fm0
= Cnd. Since Cnd ≥ (n + 1) cosdλeθ ≥ f(~xl) for all

l ≥ 1 we see that Cnd is the global maximum of f . ]


