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We explore the phase diagram of spin-orbit Mott insulators on a honeycomb lattice, within the
Kitaev-Heisenberg model extended to its full parameter space. Zigzag-type magnetic order is found
to occupy a large part of the phase diagram of the model, and its physical origin is explained
as due to interorbital t2g − eg hopping. Magnetic susceptibility, spin wave spectra, and zigzag
order parameter are calculated and compared to the experimental data, obtaining thereby the spin
coupling constants in Na2IrO3 and Li2IrO3.
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In the quest for the materials with novel electronic
phases, iridium oxide Na2IrO3 came into focus re-
cently [1–7] due to theoretical predictions [8, 9] that this
system may host Kitaev model physics and quantum spin
Hall effect.
Na2IrO3 is an insulator with sizable and temperature

independent optical gap ≃ 0.35 eV [7], and shows Curie-
Weiss type susceptibility [1, 6] with moments correspond-
ing to effective spin one-half of Ir4+ ion with t52g config-
uration [10]. These facts imply that Na2IrO3 is a Mott
insulator with well localized Ir-moments.
Collective behavior of local moments in Mott insula-

tors is governed by three distinct and often competing
forces: (i) orbital-lattice (Jahn-Teller) coupling, (ii) vir-
tual hopping of electrons across the Mott gap resulting
in exchange interactions, and (iii) relativistic spin-orbit
coupling (see Ref. [11] for extensive discussions). The
corresponding energy scales EJT , J , and λ vary broadly
depending on the type of magnetic ions and chemical
bonding [12]. When λ > (EJT , J), as often realized
for Co, Rh, Ir ions in octahedral environment, local
moments acquire a large orbital component which may
result in a strong departure from spin-only Heisenberg
models [8, 11]. The direct observation of large spin-
orbit splitting 3λ/2 ∼ 0.6 − 0.7 eV in insulating iridates
Sr2IrO4 [13], Sr3Ir2O7 [14], and Na2IrO3 [15] made it
certain that λ > (EJT , J). Thus, low-energy physics of
Na2IrO3 is governed by interactions among the spin-orbit
entangled Kramers doublets of Ir-ions.
It is also established now [3–5] that Ir-moments in

Na2IrO3 undergo antiferromagnetic (AF) order at TN ≃
15 K. The fact that TN is much smaller than param-
agnetic Curie temperature (−125 K) [6] and spin-wave
energies [4] implies that the underlying interactions are
strongly frustrated. This is natural in so-called Kitaev-
Heisenberg (KH) model [16] where long range order is
suppressed by the proximity to the Kitaev spin-liquid
(SL) state. However, the observed “zigzag” magnetic
pattern [ferromagnetic (FM) zigzag chains, AF-coupled
to each other] came as a surprising challenge to this sim-
ple and attractive model. To resolve the “zigzag puzzle”,
a number of proposals, ranging from various modifica-

tions of the KH model [4, 6, 17–19] to a complete de-
nial [20] of a local moment picture in Na2IrO3, have been
put forward.
In this Letter, we show that the zigzag order is in fact

a natural ground state (GS) of the KH model, in a previ-
ously overlooked parameter range. Next, we identify the
exchange process that supports a zigzag-phase regime.
Further, we calculate spin-wave spectra, the ordered mo-
ment, and magnetic susceptibility of the model in zigzag
phase, and find a nice agreement with experiments. This
lends strong support to the KH model as a dominant
interaction in Na2IrO3 and related oxides.
The model.– Nearest-neighbor (NN) interaction be-

tween isospin one-half Kramers doublets of Ir4+ ions,
coupled via 90◦-exchange bonds, reads as follows (the
exchange processes are described later):

H(γ)
ij = 2K Sγ

i S
γ
j + J Si ·Sj . (1)

Here, γ(= x, y, z) labels 3 distinct types of NN bonds of
a honeycomb lattice [16] of Ir ions in Na2IrO3, and spin
axes are oriented along the Ir-O bonds of IrO6 octahe-
dron. The bond-dependent Ising coupling between the
γ components of spins is nothing but Kitaev model [21],
and the second term stands for the Heisenberg exchange.
Let us introduce the energy scale A =

√
K2 + J2 and

the angle ϕ via K = A sinϕ and J = A cosϕ; the
model (1) takes then the following form:

H(γ)
ij = A (2 sinϕ Sγ

i S
γ
j + cosϕ Si ·Sj). (2)

We let the “phase” angle ϕ to vary from 0 to 2π, un-
covering thereby additional phases of the model that es-
caped attention previously [16], including its zigzag or-
dered state which is of a particular interest here.
It is instructive to introduce, following Refs. [11, 16],

4 sublattices with the fictitious spins S̃, which are ob-
tained from S by changing the sign of its two appropri-
ate components depending on the sublattice index. This
transformation results in the S̃-Hamiltonian of the same
form as (1), but with effective couplings K̃ = K + J
and J̃ = −J , revealing a hidden SU(2) symmetry of the
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Neel

stripy

ϕ

liquid

liquid

zigzag

FM

(b)

(a)

FIG. 1: (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on ϕ-circle) are ob-
tained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see
text). Open/solid circles in the insets indicate up/down spins.
The rectangular box in zigzag pattern (top-left) shows the
magnetic unit cell. (b) Groundstate energy EGS and its sec-
ond derivative −d2EGS/dϕ

2 revealing the phase transitions.

model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.

Phase diagram.– In its full parameter space, the KH
model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 22, 23] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is
understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins [24].

To obtain the phase boundaries, we have diagonalized
the model numerically, using a hexagonal 24-site clus-
ter with periodic boundary conditions. The cluster is
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FIG. 2: (color online). Schematics of 4 different exchange pro-
cesses (see text for details), arranged around the ϕ-phase dia-
gram of Fig. 1(a). Taken separately, the HamiltoniansH1, H2,
H3, and H4 would favor “pure” Néel-AF, zigzag-AF, Kitaev-
SL, and stripy-AF states, respectively, as indicated by arrows
connecting Hi with the dots on ϕ-circle. The circle is divided
into the phase-sectors by gray lines; SL phases are shaded.

compatible with the above 4-sublattice transformation
and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b), the second
derivative of the GS energy EGS with respect to ϕ well
detects the phase transitions. Three pairs of linked tran-
sition points are found: ≃ (88◦, 92◦) and (−76◦,−108◦)
for the spin liquid/order transitions around ±π

2 , and
(162◦,−34◦) for the transitions between ordered phases.

The transitions from zigzag-AF to FM, and from
stripy-AF to Néel-AF are expected to be of first order
by symmetry; the corresponding peaks in Fig. 1(b) are
indeed very sharp. The spin liquid/order transitions near
ϕ = −π

2 lead to wider and much less pronounced peaks,
suggesting a second (or weakly first) order transition [16].
On the contrary, liquid/order transitions around ϕ = π

2
show up as very narrow peaks; on the finite cluster stud-
ied, they correspond to real level crossings. Nature of
these phase transitions remains to be clarified [25].

While at J = 0 (i.e. ϕ = ±π
2 ) the sign of K is irrel-

evant [21], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.

Exchange interactions in Na2IrO3.– Having fixed the
parameter space (K > 0, J < 0) for zigzag phase, we
turn now to the physical processes behind the model (1).
Exchange interactions in Mott insulators arise due to vir-
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tual hoppings of electrons. This may happen in many dif-
ferent ways, depending sensitively on chemical bonding,
intra-ionic electron structure, etc. The case of present in-
terest (i.e., strong spin-orbit coupling, t52g configuration,
and 90◦-bonding geometry) has been addressed in several
papers [8, 11, 16, 26]. There are following four physical
processes that contribute to K and J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This

is the dominant pathway in 90◦-bonding geometry since
it involves strong tpdσ overlap between oxygen-2p and eg
orbitals; typically, t̃/t ∼ 2. The corresponding Hamilto-
nian is [11]:

H
(γ)
2 = I2 (2Sγ

i S
γ
j − Si ·Sj). (3)

This is nothing but the model (1) withK = −J = I2 > 0,
i.e., at its SU(2) symmetric point ϕ = 3

4π inside the
zigzag phase, see Fig. 2. For the Mott-insulating iridates
(as opposed to charge-transfer cobaltates [11]), we esti-
mate I2 ≃ 4

9 (t̃/Ũ)2J̃H , where Ũ is (optically active) ex-

citation energy associated with t2g − eg hopping, and J̃H
is Hund’s interaction between t2g and eg orbitals. The

physics behind this expression is clear: (t̃/Ũ)2 measures
the amount of t2g spin which is transferred to NN eg or-
bital; once arrived, it encounters the “host” t2g spin and
has to obey the Hund’s rule.
For its remarkable properties, the Hamiltonian H2 (3)

deserves a few more words. On a triangular lattice,
it shows a nontrivial spin vortex ground state [11, 27];
however, the elementary excitations are simple SU(2)
magnons of a conventional Heisenberg-AF. When re-
garded as “J”-part of a doped t−J model, it leads to an
exotic pairing [11, 28].
Process 3: Indirect hopping t between NN t2g orbitals

via oxygen ions. This gives rise to the Kitaev model

H
(γ)
3 = −I3S

γ
i S

γ
j , with I3 ≃ 8

3 (t
2/U)(JH/U) [8] where

JH is Hund’s coupling between t2g electrons. This pro-
cess supports ϕ = −π

2 SL state, see Fig. 2.
Process 4: Mechanisms involving pd charge-transfer ex-

citations with energy ∆pd. Two holes may meet at an
oxygen and experience Coulomb Up and Hund’s Jp

H inter-
actions, or cycle around a Ir2O2 plaquette (Fig. 2). The
resulting Hamiltonian H4 has the form of H2 (3). The
coupling constant I4 ≃ 8

9 t
2( 2

2∆pd+Up−J
p

H

− 1
∆pd

) is nega-

tive [29], supporting stripy-AF not observed in Na2IrO3.
Putting things together, we observe that it is the in-

terorbital t2g−eg hopping H2 process that uniquely sup-
ports zigzag order in Na2IrO3. This implies in general
that multiorbital Hubbard-type models, when applied
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FIG. 3: Magnon spectra in the zigzag phase calculated using
Eq. (4) with (J,K) = (−4.0, 10.5) meV. The inset shows the
path along the symmetry directions in the reciprocal space;
notations of Ref. [4] are used.

to iridates with 90◦-bonding geometry, must include eg
states as well, even though the moments reside predom-
inantly in the t2g shell.
Up to this point, we neglected trigonal field splitting

∆ of the t2g level due to the c-axis compression present
in Na2IrO3. This approximation is valid as long as ∆ is
much smaller than spin-orbit coupling λ ≃ 0.4 eV [13, 15,
30] and seems to be justified, since the recent ab-initio

calculations [20] suggest that ∆ ≃ 75 meV only [31].
We have also examined the longer-range couplings,

using the hopping matrix of Ref. [20], and found that
second-NN interaction has the form of (3) (as previ-
ously noticed [32, 33]), while third-NN coupling is of AF-
Heisenberg type [the corresponding coupling constants
are 4

9 (t
2
2,3/U)]. The second (third)-NN interaction would

oppose (support) zigzag order; however, we believe that
these couplings are not significant in Na2IrO3 because
the hoppings t2 and t3 are small [34].
We do not attempt here to evaluate the parameters

involved in H1–H4; ab-initio calculations as in Ref. [35]
might be more useful in this regard. Instead, having
obtained a zigzag order in our model (1) and identified
the physical process driving this order, we turn now to
the experimental data. The J and K values in Na2IrO3

and Li2IrO3 will be extracted below from analysis of the
neutron scattering and magnetic susceptibility data.
Spin-waves in the zigzag phase.– Consider a single do-

main zigzag state, e.g., with FM chains running perpen-
dicular to z-type bonds. Following Ref. [4], we introduce
a rectangular a×bmagnetic unit cell [

√
3a0×3a0 in terms

of hexagon-edge a0, see Fig. 1(a)], and define the ab-plane
wave vector q in units of (h, k) as q = (2π

a
h, 2π

b
k). Stan-

dard spin-wave theory gives four dispersive branches:

ω2
1,2(h, k) =

[

K2 + (K + J)2
]

c2h −KJ(1− shsk)

±|(K + J)ch|
√

(2K − J)2 − (2Ksh − Jsk)2 , (4)
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FIG. 4: Experimental magnetic susceptibilities χ(T ) for
Na2IrO3 [1, 6] (squares) and Li2IrO3 [6] (circles) fitted by the
theoretical calculations. Exact χ of the 8-site (14-site) clus-
ter is shown as solid (dashed) lines. Lanczos results for the
24-site cluster are indicated by shading [37]. Their compari-
son suggests that the calculated χ gives the thermodynamic
limit down to T ≈ 100 K where the finite-size effects become
significant.

and ω3,4(h, k) = ω1,2(−h, k), with ch = cosπh, sh =
sinπh, and sk = sinπk. If K = −J , i.e. at ϕ = 3

4π point
of hidden SU(2) symmetry, two branches are degenerate
(ω1 = ω2) and become true Goldstone modes. Away
from this special point, small magnon gap is expected
to open by quantum effects not considered here. For q

with h = k, the dispersions (4) simplify to ω1(h, h) =
√

2K(2K + J) |ch| and ω2(h, h) =
√
2|Jch|, revealing

two different energy scales in magnon spectra set by K
and J couplings.

While the bandwidth of the lowest dispersive mode (set
by J) is already known to be about 5-6 meV [4], we are
not aware of the high energy magnon data to estimate K
in Na2IrO3. We have therefore examined (see below) the
magnetic susceptibility data [1, 6], and obtained (J,K) ≃
(−4.0, 10.5) meV that well fit the susceptibility as well
as neutron scattering data [4]. With this, we predict
magnon spectra for Na2IrO3 shown in Fig. 3. The lowest
dispersive (J) mode is as observed [4], indeed. However,
mapping out entire magnon spectra is highly desirable to
quantify the Kitaev term K directly.

Magnetic susceptibility .– We have calculated the uni-
form magnetic susceptibility χ(T ) of the model (1) on 8-
and 14-site clusters by exact diagonalization, and on 24-
site cluster using finite-temperature Lanczos method [36,
37]. The parameters are varied such that J = A cosϕ is
consistent with the neutron data [4] while ϕ stays within
the zigzag sector of Fig. 1(a); this strongly narrows the
possible K-window. For the data fits, we let g-factor
of Ir4+ ion to deviate from 2 (due to the covalency ef-

fects [10]), and include T -independent Van Vleck term
χ0. The result for J = −4.0 meV, K = 10.5 meV,
g = 1.78, χ0 = 0.16 × 10−3 cm3/mol fits the Na2IrO3

data nicely (Fig. 4); deviations occur at low tempera-
tures only, when correlation length exceeds the size of
the cluster used. The fit is quite robust: similar re-
sults can be found for small only variations, locating
Na2IrO3 near ϕ = 111± 2◦ of the model phase diagram
Fig.1(a). The spin couplings obtained are reasonable for
the 90◦-exchange bonds (as expected [8, 11], they are
much smaller than in 180◦-bond perovskites [13, 14]).
The magnitude of Van Vleck term also agrees with our es-
timate χ0 ≃ 8

3λµ
2
BNA ≃ 0.2×10−3 cm3/mol for Ir4+ ion,

considering spin-orbit coupling λ ≃ 0.4 eV [13, 15, 30].
Dominance of the Kitaev term (2K/J ∼ 5 in Na2IrO3)

implies strong frustration hence enhanced quantum fluc-
tuations; this explains the reduced ordered moment m ≃
0.22 µB [5]. With the J , K, and g values above, we cal-
culated the leading order spin-wave correction to m and
obtained m ≃ 0.33 µB [38].
For the sake of curiosity, we have also fitted χ(T )

data of Li2IrO3 [6], a sister compound of Na2IrO3. Ac-
ceptable results have been found for the angle window
ϕ = 124 ± 6◦; a representative plot for J = −5.3 meV,
K = 7.9 meV, g = 1.94, χ0 = 0.14 × 10−3 cm3/mol is
shown in Fig. 4. It is worth noticing that the value of
J , which controls the bandwidth of the softest spin-wave
mode (see Fig. 3), appears to be similar in both com-
pounds. This may explain why they undergo magnetic
transition at similar TN ≃ 15 K, despite very different
high temperature susceptibilities.
To conclude, we have clarified the origin of zigzag

magnetic order in Na2IrO3 in terms of nearest-neighbor
Kitaev-Heisenberg model for localized Ir-moments. The
model well agrees with the low-energy magnon and high
temperature magnetic susceptibility data. A general im-
plication of this work is that the interactions considered
here should hold a key for understanding the magnetism
of a broad class of spin-orbit Mott insulators with 90◦-
exchange bonding geometry, including triangular, honey-
comb, hyperkagome lattice iridates.
We thank R. Coldea, Y. Singh, H. Takagi, and I.I.

Mazin for discussions. JC acknowledges support by
the Alexander von Humbolt Foundation, ERDF under
project CEITEC (CZ.1.05/1.1.00/02.0068), and EC 7th

Framework Programme (286154/SYLICA). GJ is sup-
ported by GNSF/ST09-447 and in part by the NSF under
Grant No. NSF PHY11-25915.

∗ Also at Andronikashvili Institute of Physics, 0177 Tbilisi,
Georgia

[1] Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412
(2010).

[2] H. Takagi (unpublished).



5

[3] X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Y.-
J. Kim, H. Gretarsson, Y. Singh, P. Gegenwart, and
J.P. Hill, Phys. Rev. B 83, 220403 (2011).

[4] S.K. Choi, R. Coldea, A.N. Kolmogorov, T. Lancaster,
I.I. Mazin, S.J. Blundell, P.G. Radaelli, Y. Singh,
P. Gegenwart, K.R. Choi, S.-W. Cheong, P.J. Baker,
C. Stock, and J. Taylor, Phys. Rev. Lett. 108, 127204
(2012).

[5] F. Ye, S. Chi, H. Cao, B.C. Chakoumakos,
J.A. Fernandez-Baca, R. Custelcean, T.F. Qi, O.B. Kor-
neta, and G. Cao, Phys. Rev. B 85, 180403 (2012).

[6] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale,
W. Ku, S. Trebst, and P. Gegenwart, Phys. Rev. Lett.
108, 127203 (2012).

[7] R. Comin, G. Levy, B. Ludbrook, Z.-H. Zhu,
C.N. Veenstra, J.A. Rosen, Y. Singh, P. Gegenwart,
D. Stricker, J.N. Hancock, D. van der Marel, I.S. Elfi-
mov, and A. Damascelli, Phys. Rev. Lett. (in press);
arXiv:1204.4471.

[8] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102,
017205 (2009).

[9] A. Shitade, H. Katsura, J. Kuneš, X.-L. Qi, S.-C. Zhang,
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[36] J. Jaklič and P. Prelovšek, Adv. Phys. 49, 1 (2000).
[37] We used M = 100 Lanczos steps and Nst = 1024 random

sampling vectors. The values of χ and their statistical
error are presented in Fig. 4 in the form of 3σ-intervals
estimated by taking many sets of the sampling vectors.

[38] Hybridization of the Ir-5d and O-2p orbitals on antiferro-
magnetic bonds [5], as well as the higher order quantum
corrections may further reduce m.


