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Phase-resolved transient grating spectroscopy in semiconductor quantum wells has been shown to
be a powerful technique for measuring the electron-hole drag resistivity ρeh, which depends on the
Coulomb interaction between the carriers. In this paper we develop the interacting drift-diffusion
theory, from which ρeh can be determined, given the measured mobility of an electron-hole grating.
From this theory we predict a cross-over from a high-excitation-density regime, in which the mobility
has the “normal” positive value, to a low-density regime, in which Coulomb-drag dominates and
the mobility becomes negative. At the crossover point, the mobility of the grating vanishes.

The phenomenon of Coulomb drag, whereby an elec-
tronic current driven in a quasi-two dimensional electron
gas drags carriers in an adjacent quantum well, creating
a potential difference or a current in the latter has been
a topic of intense interest in condensed matter physics
for the past two decades [1–10]. The effect was first pre-
dicted, theoretically, by Pogrebinskii [1] and Price [2],
but the field exploded only in the early 1990s, follow-
ing the first successful realization of independently con-
tacted bilayer structures [11]. Since then the field has
flourished, due to the insights it affords on the nature of
Coulomb correlations, non-equilibrium fluctuations, and
quantum coherence between spatially separated systems.
While the original experiments were done on electronic
bilayers [3], it was soon realized that electron-hole bi-
layers offer even more interesting scenarios [7, 8, 10, 12].
For example, electrons and holes can condense in an exci-
tonic superfluid, with or without a magnetic field [10, 13–
15], and the occurrence of such a condensation should
lead to striking manifestations in Coulomb drag exper-
iments [15]. More recently, drag effects have also been
investigated for different spin populations in a single
quantum well (spin Coulomb drag) [16–21], in bilayer
graphene [22, 23], in topological insulators [24], and in
trapped cold atoms [25].

The study of drag effects in electron-hole bilayers is no-
toriously complicated by the fact that, in order to host
carriers of opposite polarities, the two layers must be held
at different chemical potentials, while their spatial sep-
aration is of the order of 20-30 nm. In contrast to this,
a non-equilibrium non-homogeneous distribution of elec-
trons and holes can be rather easily achieved in a single
layer with a laser of frequency larger than the band gap,
which creates an equal number of electrons and holes, in
addition to the carriers (say electrons) that are already
present at equilibrium.

In a recent series of experiments [20, 26, 27] the inter-
ference between two laser beams coming from different
directions and polarized in the same direction has been
exploited to create a transient electron-hole (e-h) grating,
i.e., a spatially periodic modulation of the electron and
hole densities on the surface of an n-type GaAs quan-

tum well. Electron-hole drag manifests itself in quite a
striking and direct way in the mobility of the e-h grating
under the action of an electric field [27, 28]. The crucial
observation is that the drift velocity of the e-h grating - a
collective formation - differs, in general, from the drift ve-
locity of the background majority carriers (electrons). If
the background carriers were absent (e.g. in an intrinsic
material) then the drift velocity would vanish, since the
net electric force on a neutral object is zero. In the oppo-
site limit, in which the e-h grating is a small perturbation
on the background electron density, the mobility depends
crucially on the rate of momentum transfer between elec-
trons and holes [28]. Let us assume at first that this can
be neglected. Then the constraint of charge neutrality
causes the dense electrons to follow the few holes rather
than the other way around. Under these conditions the
grating moves with the drift velocity of the holes, and
the mobility is positive [29]. Coulomb collisions between
counter-flowing electrons and holes produce the equiva-
lent of an electric field that pushes the holes in the direc-
tion opposite to the external field. Which of the two fields
ultimately dominates depends on the mobility of the elec-
trons: if that mobility is sufficiently high the holes will
inevitably reverse their direction of flow. The mobility
of the grating will then be negative and approach the
mobility of the electrons when the latter is large.

The possibility of observing anomalous (i.e., negative)
mobility for an electron-hole packet in n-type semicon-
ductors was first pointed out by McLean and Paige [30]
and recently confirmed by Yang et al. [27] in n-GaAs.
However, these authors relied for their analysis on a sim-
plified phenomenological model in which the e-h grating
and the background electrons are treated as separate en-
tities. The e-h grating, being a neutral entity, does not
directly respond to the electric field. Hence, it is impos-
sible, within this model, to describe the competition be-
tween Coulomb drag and the “normal” ambipolar mobil-
ity of the grating: the resulting formulas are correct only
in the limit of strong Colulomb drag and cannot be used
to predict the cross-over between the “normal” and the
“anomalous” (i.e. Coulomb drag-dominated) regimes.

In this paper we develop a full-fledged interacting drift-
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diffusion theory from which we derive general formulas
for the mobility and the diffusion constant of the e-h grat-
ing. These formulas not only enable us to extract pre-
cise values of the Coulomb drag resistivity from Doppler
velocimetry data, but they also lead to a striking predic-
tion: the e-h grating mobility can be driven through a
sign reversal by changes in excitation intensity, tempera-
ture, or background density. With an appropriate choice
of parameters, the e-h grating can be made stationary in
the presence of an electric field.
Our starting point is the drift-diffusion equation for

electron and hole densities (n and p respectively), in
which, however, we take into account the presence of the
off-diagonal homogeneous conductivity σeh (this is what
makes our theory interacting, whereas, in the “standard”
theory, σeh is set to zero). Thus, we have

e∂t

(

−n
p

)

= −∇ ·

[(

σee σeh

σhe σhh

)(

E
e
e

E
e
h

)]

, (1)

where the effective electric fields are expressed as Ee
e/h =

E ± 1
e∇µc/v. Here, E includes both external and built-

in electric fields. µc and µv are chemical potentials of
electrons and holes, respectively, not to be confused with
the homogeneous mobilities µe and µh, which will appear
later. By substituting the electric fields, the continuity
equations become

e∂tn = ∇ · [eDee∇n+ eDeh∇p] +E · ∇σe

+ σe∇ ·E , (2)

e∂tp = ∇ · [eDhh∇p+ eDhe∇n]−E · ∇σh

− σh∇ ·E , (3)

where σe = σee + σeh and σh = σhh + σeh. The diffusion
matrix elements are Dαβ = (−1)δαγσαγ(χ

−1)γβ/e
2 (sum

over γ implied), where χγβ = ∂nγ/∂µβ is the suscepti-
bility matrix [31].
Following the standard procedure [29] we combine

Eqs. (2) and (3) to cancel the space charge term ∇ · E,
and only then impose the charge neutrality condition
δp = δn, where δn and δp are the deviations of the
corresponding densities from equilibrium and we assume
(|∇δn|/n ≪ 1). The result is

∂t(δn) = −µaEext · ∇δn+Da∇
2δn , (4)

where the e-h grating mobility and diffusion constant are
defined by

µa =
[σe(∂n + ∂p)σh − σh(∂n + ∂p)σe]

e(σe + σh)
, (5)

Da =
(σeDh + σhDe)

(σe + σh)
. (6)

Here Dh = Dhh +Dhe and De = Deh +Dee. By taking
into account the electron-hole Coulomb drag, the con-

ductance matrix can be expressed as [18]

σ̂ = (ρeρh + ρehρh
µh

µe
+ ρehρe

µe

µh
)−1

×

(

ρh + ρeh
ρh

ρe

µh

µe
−ρeh

−ρeh ρe + ρeh
ρe

ρh

µe

µh

)

, (7)

where the resistivities of electrons and holes are defined
as ρe = 1/(nµee) and ρh = 1/(pµhe), respectively (these
resistivities can be straightforwardly measured in homo-
geneous d.c. transport experiments in which the carriers
are either electrons or holes). ρeh stands for the cross-
resistivity due to electron-hole Coulomb drag. By sub-
stituting the conductivity matrix elements into Eqs. (5)
and (6), we obtain

µa =
−µe(n−p)/n

1 + (µe/µh)(ρe/ρeh)+(p/n)(µe/µh)

{

1−
ρe
ρeh

×

[

1 + eρeh(pµe + nµh)−enp(µe + µh)(∂n + ∂p)ρeh)

1+ρe/ρh + eρehµh(n−p)2/n

]}

,

(8)

Da =
Depµh +Dhnµe + eρehµeµh(n− p)(Dhn−Dep)

pµh + nµe + eρehµeµh(n− p)2
.

(9)

These two equations are the main results of this paper.
For orientation we now discuss some limiting cases, tak-
ing, for definiteness, the n-type case, i.e., n > p:
i) Weak Coulomb drag limit (σeh, ρeh ∼ 0):

µa ≈
n− p

n/µh + p/µe
, (10)

Da ≈
Depµh +Dhnµe

pµh + nµe
. (11)

These results agree with the well-known expressions for
the e-h grating mobility and diffusion constant in the ab-
sence of Coulomb drag [29, 32]. The e-h grating mobility
depends on the difference of electrons and hole densities.
In the n-type case, µa is positive: therefore, the grating
moves in the direction of the electric field.
ii) Weak pumping regime (δn ≪ n, ρh ≫ ρe):

µa ≈

(

ρe
ρeh

− 1

)

µe

1 + (µe/µh)(ρe/ρeh)
, (12)

Da ≈ Dh ≈
kBT

e

µeρe/ρeh
1 + (µe/µh)(ρe/ρeh)

, (13)

where the minority carriers are assumed to be non-
degenerate. Similar to Eq. (3) of Ref. 28, the expres-
sion of the mobility here predicts a sign reversal of µa

at ρe = ρeh. Specifically, µa becomes negative when the
Coulomb drag resistivity is larger than the ordinary resis-
tivity of the electrons. One notices that the ratio Da/µa

in this case is only dependent on ρe/ρeh and temperature,
which suggests a neat way to extract the drag resistivity
in experiment [27].
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iii) Strong pumping case, i.e., δn ∼ n and, conse-
quently, p ∼ n. In this case, we find that the expression
in square bracket in Eq. (8) is larger than 1 (the derivative
of Coulomb drag with respect to the density is negative),
which suggests that µa can be positive even for ρe < ρeh.
If the carrier density due to the injection is much larger
than the one from doping, then one has n ≈ p, resulting
in µa ≈ 0.
In order to test the predictive power of Eqs. (8) and

(9) we need a reasonable model for the Coulomb drag
resistivity ρeh and the homogeneous drag-free mobilities
µe = e/[m∗

e

∑

i(τ
e
i )

−1] and µh = e/[m∗

h

∑

i(τ
h
i )

−1], where
m∗

e andm∗

h are the effective masses of electrons and holes.
In two-dimensional polar materials the dominant scatter-
ing mechanisms are [33] (i) polar-optical phonon scatter-
ing [33]

τ−1
OP =

1

4πǫ0

e2π
√

2m∗ω0/~NLO

2~

(

1

κ∞

−
1

κ0

)

, (14)

where the temperature dependence comes from the
phonon number NLO, (ii) acoustic phonon deformation
potential scattering [34]

τ−1
D =

Ξ2kBTm
∗

Dv2sl~
3

3

2a
, (15)

and (iii) ionized impurity scattering, which, in the ran-
dom phase approximation, has the form

τ−1
imp(ǫk) =

nie
4

16π~EFκ2
0ǫ

2
0

∫ 2π

0

dθ(1 − cos θ)

×
(

κD

kF
+
√

2ǫk(1 − cos θ)/EF

)

−2

, (16)

where the screening wave vector is κD = e2

2ǫ0κ0

1
~2π [m

∗

e(1−

e−~
2nβπ/m∗

e ) +m∗

h(1 − e−~
2pβπ/m∗

h)] and EF (kF ) is the
Fermi energy (wave vector). κ0 and κ∞ in these equa-
tions stand for the dielectric function in the static and
high frequency limits, respectively. ǫ0 is the permittiv-
ity in vacuum and ~ω0 is the optical-phonon energy. In
Eq. (15), D and vsl represent the crystal density and lon-
gitudinal sound velocity, respectively. a is the effective
well-width. Ξ is the deformation potential constant. Fi-
nally, the resistivity due to electron-hole Coulomb drag
is obtained from [18]

ρeh =
~
2

e2npkBT

1

(2π)2

∫

∞

0

dq
q3

2

∫

∞

0

dωImQ0eImQ0h

× [(1 + κD/q)2 sinh2(~ω/2kBT )]
−1

, (17)

where Q0e/h is the temperature-dependent Lindhard
function for electrons or holes times the Fourier trans-
form of the Coulomb interaction (see Ref. 35). By taking
the electron doping density n0 = 1.9×1011 cm−2 and fit-
ting the low temperature electron mobility measured in
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FIG. 1: (Color online) (a) ρe (red solid curve) and ρeh (blue
dashed one) as functions of temperature with ni = 0.005n0 .
The green dotted curve represents ρe with ni = 0.2n0. Inset:
zoom in on the low temperature region T < 3.5 K. (b) Grating
mobility as function of temperature. The blue squares are
experimental data from Ref. 27. The apparent breaks in the
curves as they cross zero are artifacts of the logarithmic scale.

the experiment by Yang et al. [27] in 9 nm GaAs quan-
tum wells, µe(5K) = 5.5× 105 cm2/V, we determine the
effective impurity density to be ni = 0.005n0. Unfortu-
nately, the same model, when applied to holes, leads to
a hole mobility about five times larger than the one im-
plied by the experimentally measured values of µa and
Da. This discrepancy may be attributed to the band
structure or additional scattering mechanisms for holes.
We have found that rescaling µh by a factor 0.2 at all
temperatures leads to results in excellent agreement with
experiment. The following calculations are based on this
rescaling.

In Fig. 1(a), we plot the electron resistivity ρe as a
function of temperature, as well as the electron-hole drag
resistivity ρeh in the weak pumping regime. It is seen
that the electron-hole drag resistivity is smaller than the
electron resistivity both at high and low temperature.
However, at intermediate temperature, one has ρeh >
ρe. The two curves intersect at 1.5 K and 385 K. For
comparison, we also plot the electron resistivity (green
dotted curve) for a more strongly disordered system, in
which ni = 0.2n0. In this case, the regime in which
ρeh > ρe is significantly narrower, due to the increase of
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FIG. 2: (Color online) Grating mobility as a function of
pumping intensity (the latter quantified by the ratio p/n0)
at 20 and 200 K.

electron resistivity, but still clearly visible (the electron-
hole Coulomb drag is essentially independent of impurity
concentration).

Fig. 1(b) shows the spin-grating mobility µa calculated
from Eq. (8) in the infinitesimal pumping regime. Two
changes in sign of µa vs temperature are visible: they
correspond to the two crossings between ρeh and ρe. In
this figure, we also plot the experimentally determined µa

(blue squares). We find that the theoretical results are in
excellent agreement with the experiment in the temper-
ature range 20-150 K, in which range the e-h drag domi-
nates and the e-h grating mobility is negative. However,
the experimental data do not show any sign reversal. On
the high temperature end, it simply appears that the
experiment did not reach sufficiently high temperature.
A high-temperature cross-over was, in fact, observed in
Ref. 28. At low temperature, the reason for the discrep-
ancy may lie in an undesired laser-induced heating of the
electrons.

In Fig. 2, we plot the e-h grating mobility as a func-
tion of pumping intensity at 20 K and 200 K. Neglect-
ing the equilibrium hole density, we have p = δn and
n = n0 + p. Then, the pumping intensity can be quan-
tified by the ratio p/n0. We find that the mobility at
first increases with increasing pumping intensity and be-
comes positive at large excitation levels. After reaching
the maximum value, the mobility begins to decrease upon
further increase of the pumping intensity, and eventually
approaches zero. This behavior is consistent with our
discussion above.

Another way to change the sign of the e-h grating mo-
bility is by tuning the equilibrium electron density by
means of electrostatic gating. In Fig. 3, we show µa vs
n0 for different temperatures and pumping intensities.
In all cases, the grating mobility at first increases with
decreasing background density and reaches a maximal
value. This can be understood by the quick increase of
the electron resistivity, since ρe/ρeh increases. As the
background electron density further decreases to a negli-
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FIG. 3: (Color online) Grating mobility as a function of equi-
librium electron density.
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FIG. 4: (Color online) Ambipolar diffusion constant (blue
dashed curve) and hole diffusion constant (red solid curve)
as function of temperature for nb = n0 in the weak pumping
case. Notice that the two curves are essentially identical. The
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lar diffusion constant reported by Yang et al. [27]. The green
dotted curve shows the ratio between the ambipolar diffusion
constants with and without Coulomb drag, while the pink
chain curve shows the corresponding ratio for the e-h grating
mobility.

gible value, we fall back into the “strong pumping limit”
(n ≃ p) and the mobility decreases towards zero.

As a last point, we observe that the e-h grating diffu-
sion constant remains essentially identical to the hole dif-
fusion constant Dh (see Fig. 4), both being substantially
reduced by Coulomb drag caused by interaction with the
background electrons. We notice that, as expected, the
effect of Coulomb drag on the grating diffusion constant
is much less dramatic than its effect on the mobility. The
theoretical results show good agreement with the exper-
iment.

In summary, we have developed a drift-diffusion theory
for the calculation of the mobility and diffusion grating
of an electron-hole grating in a single electronic layer,
taking fully into account the effect of Coulomb drag be-
tween electrons and holes. Our formulas show that the
mobility of an electron-hole grating is a sensitive probe
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of electron-hole drag. Further, due to its dependence
of electron-hole drag, the mobility of the grating can be
driven through changes of sign by changing temperature,
excitation power, or background electron density.
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