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Realizations of Majorana fermions in solid state materials have attracted great interests recently
in connection to topological order and quantum information processing. We propose a novel way
to create Majorana fermions in superconductors. We show that an incipient non-collinear magnetic
order turns a spin-singlet superconductor with nodes into a topological superconductor with a stable
Majorana bound state in the vortex core; at a topologically-stable magnetic point defect; and on
the edge. We argue that such an exotic non-Abelian phase can be realized in extended t-J models
on the triangular and square lattices. It is promising to search for Majorana fermions in correlated
electron materials where nodal superconductivity and magnetism are two common caricatures.
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A Majorana fermion is an electrically neutral fermion
whose antiparticle is itself [1]. In recent years, Majorana
fermions have attracted growing attention in condensed
matter physics [2–4]. Specifically, Majorana fermions can
be realized as zero-energy bound states in the vortex
core or on the edge of certain two-dimensional super-
conductors. Instead of the usual Bose or Fermi statis-
tics, these vortices obey non-Abelian statistics [5–10] as
a manifestation of topological order [11, 12]. Due to
this remarkable feature, Majorana bound states (MBSs)
can be utilized for topologically-protected qubits in fault-
tolerant quantum computation [2, 13, 14]. Several sys-
tems have been proposed to realize MBSs, such as even-
denominator fractional quantum Hall states [5, 6, 8, 15],
p + ip superconductors [8–10] and superfluids [16, 17],
superconductor-topological insulator interfaces [18–21],
s-wave Rashba superconductor [22–24] and spin-orbit-
coupled nodal superconductors[25].

In this work, we present a novel realization of MBSs in
spin-singlet superconductors with nodal excitations.We
show that when a coexisting non-collinear magnetic or-
der (NCMO) develops with a wavevector connecting two
nodes at opposite momenta, there will be one MBS in
each vortex core and on the edge of such topological su-
perconductors. Moreover, each stable point defect of the
NCMO also hosts a MBS. We demonstrate our proposal
with two explicit examples. The first one is a nodal d+ id
superconductor [26] coexisting with 1×3 (or 3×3) copla-
nar magnetic order on the triangular lattice. We argue
that this state is likely to be realized in a doped t-J2

model on the triangular lattice and is relevant for the
sodium cobaltate superconductors NaxCoO2 · yH2O near
x = 1/3 [26, 27]. The second example is a dx2−y2 super-
conductor with coexisting Q = (Q0, Q0) NCMO on the
square lattice which may be realized in a doped t-J1-J2-
J3 model on the square lattice. Many strongly correlated
materials, from high-Tc cuprates to heavy-fermion com-

pounds, exhibits the d-wave superconductivity [28, 29] in
proximity to [30] or coexisting with [29, 31] magnetic or-
ders. Our findings suggest that Majorana fermions may
exist in correlated electron materials with magnetic frus-
tration and nodal superconductivity.

We begin with a general discussion. The low-energy
excitations of a nodal superconductor are massless Dirac
fermions with linear dispersion. Our basic idea is to
create a topological superconductor by adding a proper
mass to the nodal fermions. Consider the spin-singlet
case with n pairs of isolated nodes located at crystal mo-
menta ±q`, ` = 1, . . . n. Expanding around the nodes,
the low-energy BCS Hamiltonian describing the quasi-
particle excitations has a generic form in the Nambu
basis Ψ`k ≡ (cq`+k,↑, c

†
−q`−k,↓; c−q`+k,↓,−c†q`−k,↑)

T for
each pair of nodes at opposite momenta:

Heff =
∑
`,k

Ψ†`kH`kΨ`k, H`k = (n`k · ~τ)σz, (1)

and n`k = (Re∆q`+k,−Im∆q`+k, ξq`+k) =
∑
α kα~v

`
α +

O(|k|2) with α = x, y. Here ∆k is the pairing gap func-
tion and ξk the kinetic energy. ~τ and ~σ are Pauli ma-
trices operating in the particle-hole (Nambu) and spin

sectors respectively. A unitary rotation U ≡ exp[i ~φ` · ~τ ]
turns H`k into U†H`kU = (k1τx+k2τy)σz where k1,2 are
linearly-independent combinations of kx and ky [52].

Let’s focus on the `-th pair of nodes at ±ql. Clearly, a
gap will be generated by adding a generic mass term of
the form τ0(σxReM − σyImM) to the Hamiltonian,

U†H ′`kU = (k1τx+k2τy)σz +τ0(σxReM −σyImM), (2)

where M is a complex order parameter. This is noth-
ing but the effective Hamiltonian for proximity induced
s-wave superconductivity on the surface of a 3D topolog-
ical insulator [18], with M playing the role of the super-
conducting (SC) order parameter. The latter is known to
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contain a single MBS in the vortex core. In the present
context of singlet nodal superconductors, the physical
origin of the local order M turns out to be a non-collinear
(coplanar) magnetic order (NCMO) described by

Hcp =
∑
r

[
M(Sxr + iSyr )ei2q0·r + h.c.

]
=
∑
`k

Mc†q`+k+q0,↑cq`+k−q0,↓ + h.c., (3)

where Sar =
∑
αβ c

†
rασ

a
αβcrβ/2, a = x, y, z are the spin

operators at site r. When the ordering wavevector 2q0

connects the nodes at ±q`, the magnetic scattering gen-
erates precisely the mass term in Eq. (2). Since SO(3)
spin-rotational symmetry is completely broken, such a
NCMO bears a topologically stable point defect [32] char-
acterized by the nontrivial homotopy π1

(
SO(3)

)
= Z2.

The SC vortex in Fu-Kane model [18] maps exactly to
such a stable point defect of NCMO M in (2). Therefore,
there is a non-Abelian MBS in each stable point defect of
non-collinear magnetic order.

Remarkably, the NCMO gives rise to a non-Abelian
topological superconductor since, among the two (even
and odd) combinations ck,e(o) ≡ 1√

2
(cq`+k,↑ ± c−q`+k,↓),

the odd combination is driven into the topologically non-
trivial weak-pairing phase [8] by the mass gap, while the
even one to the trivial strong-pairing phase. The situa-
tion is analogous to a doubled-layer ν = 1/2 fractional
quantum Hall system, where the Abelian (331) state can
be driven to a non-Abelian pfaffian state by interlayer
tunneling [8, 33, 34]. The existence of a single MBS in the
SC vortex core is thus implied by the vortex-boundary
correspondence [8]. Note that the existence of a single
MBS will not be affected by the other nodal fermions
[25]. They are spin-flip scattered either to finite energy
away from the Fermi level or, in special cases, to differ-
ent nodes not connected by pairing; they either remain
gapless or are gapped out in the magnetic sector.

We stress that it is crucial to require the
magnetic order to be non-collinear : a collinear
spin order, such as Hcl = 2m

∑
r S

x
r cos(2q0 ·

r) =
∑
`k

∑
σmc

†
q`+k+q0,σ

cq`+k−q0,σ̄ + h.c., not only

drives the Nambu pair (cq0+k,↑, c
†
−q0−k,↓), but also

(c−q0+k,↑, c
†
q0−k,↓) into the weak-pairing phase, creat-

ing two copies of weak-pairing p + ip superconductors
with two MBSs in the vortex core and two counter-
propagating Majorana modes on the edge. Thus, there
will be no stable MBSs in this case since the two branches
can scatter and open up a gap in the energy spectrum.

On general grounds, NCMO can be realized in frus-
trated systems from the residual spin-spin interactions
between the nodal fermions in the SC state. Its presence
(3) breaks both inversion and spin rotational symmetry.
Thus, the spin-singlet pairing can mix with triplet pair-
ing. When the triplet pairing amplitude is small com-
pared to |M |, the system will stay in the gapped non-
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FIG. 1: (color online) (a) The 1st BZ of the triangular lat-
tice and the 6 nodes (Ni) of the 2nd NN d + id pairing gap
function. The normal state FS (dashed circle) crosses the gap
nodes at doping xc for the nodal chiral superconductor. The
arrow indicates the wavevector of the 1× 3 NCMO shown in
(b) with the magnetic zone shown by dashed parallelogram.
~a1,2 are two primitive lattice vectors. The reciprocal vectors

are ~b1,2 with ~ai ·~bj = δi,j .

Abelian topological phase. In the opposite limit, a dom-
inant one-component chiral triplet pairing state is well
known to be in the non-Abelian weak-pairing phase [8, 9].
Therefore we expect that the non-Abelian topological su-
perconductor to be stable against the mixing between sin-
glet and triplet pairing. We next demonstrate the above
predictions with direct calculations in two specific exam-
ples on the triangular and the square lattices.

We start with the nodal chiral superconductors on the
triangular lattice proposed for the SC state of hydrated
sodium cobaltates [35]. Recent NMR measurements find
strong evidence for singlet pairing [27, 36, 37] with nodal
excitations at a critical doping xc ≈ 0.26 [37]. Specifi-
cally, it was shown [26] that 2nd nearest neighbor (NN)
d + id pairing can be the dominant pairing channel on
the electron doped triangular lattice where the complex
gap function has 6 isolated zeros inside the 1st Brillouin
zone (BZ). The Fermi surface (FS) crosses these nodes at
a critical doping xc, producing 6 Dirac points as shown in
Fig. 1(a). The SC states at x < xc and x > xc are sepa-
rable by a topological phase transition. We thus consider
a simple effective pairing Hamiltonian

H =
∑
kσ

ξkc
†
kσckσ +

∑
k

(∆kck↑c−k↓ + h.c.), (4)

where ξk is the band dispersion with hopping ampli-
tudes (t1, t2, t3) = (−202, 35, 29) meV for the first 3-NN
[26]. ∆k = 2∆2

[
cos(k1 − k2) + e i 2π/3 cos(2k1 + k2) +

e i 4π/3 cos(k1 + 2k2)
]

is the 2nd NN d + id pairing gap

function in the basis k = k1
~b1 + k2

~b2 shown in Fig. 1(a).
The 6 Dirac nodes (Ni, i = 1, · · · , 6) are located at
(k1, k2) = ±(2π/3, 0), ±(0, 2π/3), and ±(2π/3,−2π/3).
Such a d+ id superconductor exhibits quantized spin Hall
conductance [8] associated with the winding number W
of the unit vector n̂k = (Re∆k,−Im∆k, ξk)/Ek where
Ek =

√
ξ2
k + |∆k|2. When the FS lies inside the Dirac

points (x > xc), W = −2 and there are two counter-
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clockwise-propagating chiral fermions on the edge; each
is charge neutral but carries spin ~/2 [26]. When the FS
encloses the six gap nodes (x < xc), W = 4 and there
are four spin-carrying chiral fermions on the edge.

A NCMO described by Hcp in Eq. (3), with 2q0 point-
ing from Ni+3 to Ni (Fig. 1a), produces a mass gap
for the nodal fermions as discussed above. The mag-
netic order corresponds to the 1 × 3 coplanar pattern
shown in Fig. 1(b). The nodal chiral superconductor is
thus turned into a non-Abelian topological superconduc-
tor with a winding number W = +1. Similar to a spinless
p + ip superconductor [8], it supports a single MBS in
the vortex core and on the sample edge. To demonstrate
the latter, we calculate explicitly the edge spectrum of
H +Hcp on a cylinder with two parallel edges along the
~a2 direction. The solutions of the BdG equations [38]
are shown in Fig. 2(a) for ∆2 = 150 meV and M = 200
meV. The bulk excitations are completely gapped since
the scattering wave vector 2q0 not only connects the
Nambu pair (N5, N2) but also (N3, N4) and (N1, N6) in
the magnetic sector. There is a single branch of gapless
Majorana mode crossing k = 0 that is localized at the
edges. We also performed direct calculations of the SC
vortex and the magnetic defect spectrum on 90× 30 pe-
riodic lattices in the presence of a vortex-antivortex pair
and a pair of stable point defects respectively [38]. The
results are shown in Fig. 2(b) and (c). Clearly, a single
zero-energy MBS emerges with a density profile local-
ized in the SC vortex core and at the magnetic defect.
Note that since the topological superconductor is in the
gapped phase, its stability is protected against perturba-
tions that are not strong enough to destroy the gap and
create a quantum phase transition into a different state.
As a result, the non-Abelian topological phase support-
ing MBS proposed here is not limited to very particular
parameters and will remain stable when, e.g. small vari-
ations in doping around xc cause the FS to deviate from
the gap nodes, or a small NN pairing component induced
by a subdominant NN exchange J1 causes the gap nodes
to shift and the magnetic ordering wave vector not to
connect precisely the pair of nodes at opposite momenta.

To see how the 1 × 3 NCMO can arise microscopi-
cally, we consider the 2nd NN antiferromagnetic Heisen-
berg model, i.e. the J2 model, on the triangular lattice.
The classical ground state is well-known to have 3 × 3
NCMO [39, 40]: on each of the three sublattices con-
nected by 2nd-NN bonds the spins exhibit 120 degree
coplanar order. There is a large ground state degeneracy
due to the relative spin orientations. This 3 × 3 NCMO
already induces a single MBS crossing k = 0 in the edge
spectrum [38]. Quantum fluctuations would lift the de-
generacy through the order-due-to-disorder mechanism
[41–43], and the true quantum ground state has the 1×3
order. We have carried out a Schwinger-boson large-S
expansion study [38] of the spin-S Heisenberg J2 model
and found that when S is larger than a critical value

FIG. 2: (color online) Edge state spectrum (a1) obtained on
a cylinder of length L1 = 150. Vortex spectrum (b1) and
magnetic defect spectrum (c1) obtained on 90×30 triangular
lattices with periodic boundary conditions. The momentum

k of the Majorana mode in (a1) is along ~b2 direction in the
magnetic zone in Fig. 1. Right column: the density profiles
of the zero-energy MBS. The SC vortex-antivortex pair (b2)
and the pair of magnetic defects (c2) are placed at (r1, r2) =
(23.5, 8.5) and (68.5, 23.5), where r = r1~a1 + r2~a2.

Sc ≈ 0.17 (such as for spin-1/2), the system develops the
1 × 3 NCMO shown in Fig. 1(b). This suggests that if
the residual interactions between the nodal fermions are
dominated by the 2nd NN Heisenberg exchange J2, the
1 × 3 NCMO is likely to develop with 2q0 connecting
the gap nodes at opposite momenta as shown in Fig. 1.
More intriguingly, to the extent that J2 would favor a
2nd NN d+ id resonance valence bond pairing state, it is
likely that both the nodal chiral superconductor and the
NCMO can emerge from the same exchange interaction
in a doped t-J2 model.

We turn to the 2nd example of a more familiar nodal
dx2−y2 superconductor on the square lattice described by
the same pairing Hamiltonian H in Eq. (4), but with the
dispersion ξk = −2t

[
cos(k1 + k2) + cos(k1 − k2)

]
− µ for

NN hopping t, and the NN dx2−y2 pairing gap function
∆k = 2∆1

[
cos(k1 + k2)− cos(k1− k2)

]
. The momentum

is defined as k = k1
~b1 + k2

~k2 as shown in Fig. 3. The
four nodal points are located at N1,3 : (k1 = 0, k2 = ±q0)
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FIG. 3: (color online) (a) The 1st BZ of the square lattice.
Black circles denote the four nodes (Ni) where the FS inter-
sects the nodal lines of the dx2−y2 pairing gap function. The
NCMO with Q0 = (π/2, π/2) (black arrow) turns them into
6 red diamonds inside the magnetic zone (red rectangle). (b)
The spin configuration of the (π/2, π/2)-NCMO.

and N2,4 : (k1 = ±q0, k2 = 0) with q0 = arccos(− µ
4t ). A

NCMO described by Hcp in Eq. (3) with ordering mo-

mentum Q0 = (Q0, Q0) = 2q0 = 2q0
~b2 gaps out the

(cN3,↑, c
†
N1,↓) branch and creates a single MBS. Fig. 3

shows a specific example with µ = −2
√

2t and q0 = π/4,
together with the spin configuration. In this case, the
commensurate magnetic order cannot gap out all nodes
since the Hamiltonian is still invariant under time re-
versal followed by a lattice translation [44]. As shown
in Fig. 3(a), the NCMO turns the original four spin-
degenerate nodes (black circles) into 6 non-degenerate
ones (red diamonds). The vanished pair of nodes is
gapped out by the magnetic mass (3) and enters the
weak-pairing phase. The calculated edge spectra along
(1,1) direction is plotted in Fig. 4 near the magnetic zone
boundary, showing the zero energy MBS localized on the
parallel edges. Similar results are obtained at other com-
mensurate values of q0 such as q0 = π/3. Since the gap-
less bulk excitations are located at different momenta,
the MBS near k2 = π is expected to be stable against
impurities and the mixing with bulk excitations [25]. For
a generic doping, q0 is incommensurate with the lattice
and a corresponding incommensurate NCMO could pro-
duce a full gap for bulk excitations.

A remarkable feature seen in Fig. 4 is that the Ma-
jorana mode on the edge is dispersionless, i.e. it is lo-
calized and does not possess a chirality. This boundary
zero-energy flat band, which begins and terminates at the
reconstructed nodes of bulk excitations, is a direct conse-
quence of the nontrivial Z2 winding number (topological
index of class D in d = 1 [45]) of the momentum-space
Hamiltonian around the nodes [46] in FIG. 3(a). The
Majorana flat band is analogous to the Fermi arc on the
2D surface of 3D time-reversal symmetry breaking Weyl
semimetals proposed for pyrochlore iridates [47]. Nev-
ertheless, the time reversal symmetry breaking by the
magnetic order (3) can induce a small imaginary part in
∆1, which would generate a full gap for bulk excitation
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FIG. 4: (color online) Edge spectra as a function of momen-
tum k2 near the magnetic zone boundary for the dx2−y2 super-
conductor with (π/2, π/2)-NCMO. The spectrum is zoomed
in around k2 = π where a flat band of zero energy MBS is lo-
calized on the two edges (blue and magenta). Red dispersing
lines are the bulk states with nodes located at k2 ≈ π ± 0.04.

and a single MBS on the edge dispersing across k2 = π
with a well-defined chirality [38].

It is possible to realize such a NCMO in the Heisen-
berg J1-J2-J3 model on the square lattice. The classical
ground state has NCMO with momenta Q0 = Q0

~b1,2
where cos(Q0) = −J1/(2J2 +4J3) for 4J3 +2J2 ≥ J1 and
J3 ≥ J2/2 [48, 49]. There are numerical evidence that the
latter survives in the quantum S = 1/2 Heisenberg J1-
J2-J3 model in a wide parameter range [50, 51]. We thus
expect that such non-Abelian magnetic d-wave supercon-
ductors may be realized in certain parameter regime of
the doped t-J1-J2-J3 model.

In summary, we proposed a new type of non-Abelian
topological superconductors. They emerge when spin-
singlet superconductors with isolated nodes coexist with
NCMO at the wavevector connecting the nodes at op-
posite momenta. Majorana fermions arise in the vortex
core and on the edge of such magnetic superconductors.
Remarkably, each stable point defect of the non-collinear
magnetic order also hosts a single MBS. Since magnetism
and unconventional superconductivity are common fea-
tures of strong correlation, our findings suggest searching
for the MBS in correlated materials with magnetic frus-
tration and nodal superconductivity.
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