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The third-integer coupling resonance at νx − 2νz = ℓ, known as the Walkinshaw resonance,
is important in high-power accelerators. We find that when the betatron tunes ramp through a
Walkinshaw resonance, the fractional emittance growth (FEG) is a universal function of the effective

resonance strength: G1,−2,ℓ
√
ǫxi |∆(νx − 2νz)/∆n|−1/2, where G1,−2,ℓ is the resonance strength, ǫxi

and ǫzi are the initial horizontal and vertical emittances, respectively, and |∆(νx − 2νz)/∆n| is the
resonance crossing rate per revolution. At large effective resonance strengths, the FEG reaches
an asymptotic maximum value (FEG)

max
∼ 2ǫxi/ǫzi for ǫxi ≫ 1

2
ǫzi, or ǫzi/(2ǫxi) for ǫxi ≪ 1

2
ǫzi.

There is little emittance exchange at ǫxi =
1

2
ǫzi, which can be used to minimize emittance growth

in crossing a Walkinshaw resonance.

PACS numbers: 29.20.-c, 29.20.Dh, 41.60.Ap, 41.85.-p

Low-order coupling resonances are of concern to the
design and operation of circular accelerators. The third-
integer difference resonance νx − 2νz = ℓ, known as
the Walkinshaw resonance, is sometimes unavoidable in
many high-power accelerators, such as isochronous cy-
clotrons, nonscaling FFAGs, and other low-energy ac-
celerators. This resonance becomes a focus of design
and operation of all cyclotrons [1]. It has been termed
“formidable barrier” and “impassable” [2], and may
cause emittance growths and beam loss. Although all
the adverse effects of the resonance have long been ex-
perienced, however, the dynamic of emittance growths
has not been fully analyzed and understood. So far the
only means of reducing emittance growths have been fast
passage and the reduction of the resonance strength.
There had been theoretical analysis on the νx−2νz = ℓ

resonance [2, 3], and subsequent experimental measure-
ments in storage rings [4, 5]. These papers, however,
deal essentially with single-particle motion near the reso-
nance at fixed betatron tunes. This paper investigates in-
stead the beam dynamics while the betatron tunes ramp
through the third-integer coupling resonance. We study
emittance growths and scaling laws. Methods are given
to alleviate the emittance growth.
In term of the horizontal and vertical action-angle

phase-space coordinates (Jx, φx) and (Jz , φz), the Hamil-
tonian near the νx − 2νz = ℓ resonance can be approxi-
mated as [5, 6]

H = νxJx + νzJz +
1

2
αxxJ

2
x + αxzJxJz +

1

2
αzzJ

2
z

+G1,−2,ℓJ
1/2
x Jz cos(φx − 2φz − ℓθ + ξ1,−2,ℓ) + · · .

Here, the orbiting angle θ = s/R serves as the “time
coordinate,” R is the the mean radius, νx and νz are
respectively the horizontal and vertical betatron tunes, ℓ
is an integer, and the nonlinear detuning parameters are

αxx,zz = −
∮

β2
x,zB

′′′

z (s)

16πBρ
ds, αxz =

∮

βxβzB
′′′

z (s)

8πBρ
ds.

The resonance strength G1,−2,ℓ ≥ 0 and its phase ξ1,−2,ℓ

are represented by

G1,−2,ℓ e
jξ1,−2,ℓ =

√
2

8π

∮

β1/2
x βz

B′′

z (s)

Bρ
×

× ej[χx(s)−2χz(s)−(νx−2νz−ℓ)θ]ds,

where βx,y and χx,y(s) =
∫ s

0 ds′/βx,y(s
′) are the hori-

zontal/vertical betatron functions and betatron phases.

In above, B′′

z and B
′′′

z are, respectively, the sextupole
and octupole magnetic field components around the ring,
with Bρ representing the rigidity of the beam.
The Hamiltonian is canonically transformed to the ro-

tating frame using the generating function:

F2(φx, φz , J1, J2) = (φx − 2φz − ℓθ + ξ1,−2,ℓ)J1 + φzJ2.

The coordinate transformation is

φ1 = φx − 2φz − ℓθ + ξ1,−2,ℓ, Jx = J1,

φ2 = φz , Jz = −2J1 + J2,

and the new Hamiltonian becomes H̃ = H1(J1, φ1, J2) +
H2(J2), where H2(J2) = νzJ2 +

1
2α22J

2
2 and

H1(J1, φ1, J2) = δJ1 +
1

2
α11J

2
1 + α12J1J2

+G1,−2,ℓJ
1/2
1 (J2 − 2J1) cos(φ1). (1)

Here δ = νx − 2νz − ℓ is the resonance proximity param-
eter and the transformed detuning parameters are α11 =
αxx − 4αxz + 4αzz, α12 = αxz − 2αzz, and α22 = 4αzz.

Hamilton’s equations of motion are dJ2

dθ = − ∂H̃
∂φ2

= 0,
dφ2

dθ = ∂H̃
∂J2

, and

dJ1
dθ

= − ∂H̃

∂φ1
= G1,−2,ℓJ

1/2
1 (J2 − 2J1) sin(φ1), (2)

dφ1

dθ
= +

∂H̃

∂J1
= δ + α12J2 + α11J1

+G1,−2,ℓ
J2 − 6J1

2J
1/2
1

cos(φ1). (3)
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Particle dynamics obey Eqs. (2) and (3) at constant J2
andH1, which are invariants if the betatron tunes are not
changed. However, we study the dynamics of particle
motion during the passage of a resonance. Even when
the betatron tunes are ramped, J2 remains an invariant.
In reality, particle motion is under the influence of many
other resonances, J2 is quasi-invariant. Since the rate of
resonance crossing is normally small, H1 changes slowly.
Particle motion follows a quasi-constant-H1 contour.
The fixed points of the Hamiltonian H1 are obtained

by equating both Eqs. (2) and (3) to zero. Two unsta-
ble fixed points (UFP) are located at the intersections
between the Courant-Snyder (CS) circle (2J1 = J2) and
the coupling arc. Separatrices at other various condi-
tions have been shown in Ref. [3]. Figure 2 in Ref. [5]
shows also experimental data of one of the separatrix
for this resonance, where the CS and coupling circles
are expressed in phase space coordinates: (X,P ) =
(
√
2βxJ1 cosφ1,−

√
2βxJ1 sinφ1) with βx being the hor-

izontal betatron-function at the observation point. The
separatrix is the Hamiltonian torus that passes through
the UFP; i.e.,

1

2

(

J2 − 2J1
)

{

− δ − 1

2
α11

(

J1 +
J2
2

)

− α12J2

+2G1,−2,ℓJ
1/2
1 cos(φ1)

}

= 0,

which is composed of a CS circle 2J1 = J2, and a coupling
arc α11(2J1) − 4

√
2G1,−2,ℓ

√
2J1 cosφ1 + 4δ + 4α12J2 +

α11J2 = 0. For particles with 2J1 < J2, their flows
revolve around the stable fixed points at φ = 0 or π, and

2α11J
3/2
1 ∓ 6G1,−2,ℓJ1 + 2(δ + α12J2)J

1/2
1 ±G1,−2,ℓJ2 =

0. Experimental data depicting the Hamiltonian flow of
these particles have been shown in Fig. 7 of Ref. [5].
Now, we study the effects of the Walkinshaw resonance

on a beam of particles. When the betatron tunes ramp
through a Walkinshaw resonance, all fixed points move
across the beam, and the beam distribution will evolve
as well. Consider a beam with bi-Gaussian distribution

ρ2(Jx, Jz) =
1

ǫxǫz
exp

{

−Jx
ǫx

− Jz
ǫz

}

, (4)

where ǫx and ǫz are, respectively, the horizontal and ver-
tical rms emittances of the beam [6]. Now Jx and Jz
are transformed to J1 and J2. The invariant distribution
function in J2 can be obtained by integrating over J1:

ρ1(J2) =
1

2ǫx − ǫz

[

exp

(

− J2
2ǫx

)

− exp

(

−J2
ǫz

)]

. (5)

As the betatron tunes ramp through the νx − 2νz = ℓ
resonance, the action J2 is invariant, and the distribution
function ρ1(J2) is invariant. The first moment 〈J2〉 =
2ǫx + ǫz is also invariant, and thus ∆ǫz = −2∆ǫx. For
the above bi-Gaussian distribution, the maximum of the
invariant distribution function occurs at

J2,max =
2ǫxǫz

2ǫx − ǫz
ln

2ǫx
ǫz

.

Since J2 varies from particle to particle, it is advan-
tageous to study the beam distribution in the variable
u = J1/J2. The transformed beam distribution is

ρ2a(u, J2) =
J2
ǫxǫz

exp

{

−
(

u

ǫx
+

1− 2u

ǫz

)

J2

}

, (6)

where the variables u ∈ [0, 1
2 ] and J2 ∈ [0,∞]. In this

representation, all particles in the beam have the same
CS circle at u = J1/J2 = 1/2. We also note that when
ǫx = 1

2 ǫz, ρ2a(u, J2) is independent of u for all J2. Inte-
grating over J2, we find the 1D distribution as

ρ1a(u) =
ǫx/ǫz

[ǫx/ǫz + (1 − 2ǫx/ǫz)u]2
Θ

(

1

2
− u

)

, (7)

where Θ is the Heaviside step function. Fig. 1 shows
Eq. (7) for the bi-Gaussian distribution. When ǫxi >
1
2ǫzi, there are more particle at higher J1 actions, and
we expect that the horizontal emittance will decrease
in crossing a Walkinshaw resonance. Conversely, when
ǫxi < 1

2ǫzi, the horizontal emittance will increase in
crossing the Walkinshaw resonance. At the condition
ǫxi =

1
2ǫzi, the distribution function is uniform, and we

expect no emittance exchange during the crossing of a
Walkinshaw resonance.

FIG. 1: The distribution of a bi-Gaussian beam in the u =
J1/J2 action coordinate, for various horizontal and vertical
emittance ratios, ǫxi/ǫzi = 0.1, 0.2, · · · , 2.0. If ǫxi > 1

2
ǫzi,

there are more particles with higher J1 = Jx actions, and
vice versa. The distribution is uniform when ǫxi =

1

2
ǫzi.

When the betatron tunes ramp through a νx− 2νz = ℓ
resonance with ǫxi >

1
2ǫzi, there are more particles with

higher horizontal actions. They are drawn along the
coupling arc towards the center of the CS circle with
their horizontal actions reduced, and vertical actions in-
creased. With 2∆ǫx +∆ǫz = 0, the fractional emittance

growth (FEG), defined below, has the properties:[7]

FEG ≡
∣

∣

∣

∣

∆ǫx
ǫxi

∣

∣

∣

∣

+

∣

∣

∣

∣
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∣

∣

∣

∣
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∣

∣

∣
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∣
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(
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∣

∣

∣

∣

∆ǫz
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∣

∣

(
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Multi-particle simulations were performed to study the
dynamics of resonance crossing. Details of these simula-
tions have been published in Ref. [8]. Macro-particles,
typically 5000, are populated in bi-Gaussian distribution
with initial rms emittances ǫxi and ǫzi. The rms beam
emittances are computed by using the second moments of
the phase-space distributions [6] at each revolution. Sex-
tupoles are used to control the strength of the Walkin-
shaw resonance, and octupoles are used to control the
detuning parameters. The betatron tunes are varied lin-
early to cross a νx − 2νz = ℓ resonance. Figure 2 shows
the evolution of the horizontal and vertical emittances
during the crossing the resonance with α11 ranging from
−2000 to +2000 (πm)−1, which correspond to a tune
spread of 6α11ǫxi ≈ 0.060 within the beam.

FIG. 2: The resonance crossing rate is −1.0 × 10−4 for
a third-integer difference resonance with resonance strength
G1,−2,ℓ = 3.0 (πm)−1/2 and ǫxi = ǫzi = 5.0 πµm. The detun-
ing parameters are α11 = 0 and ±2000 (πm)−1.

The beam may encounter the resonance earlier or
later depending on the detuning parameters, but the fi-
nal FEGs are nearly independent of the detuning pa-
rameters. Simulations with larger emittances will reach
the same conclusion. In FFAG accelerators and cy-
clotrons, the ramp rates depend on the available rf volt-
age and quadrupole ramping rate. One would try to
ramp through the resonances as fast as possible to avoid
adverse effects. The typical tune-ramp rate is about
10−5 ∼ 10−3 per revolution, and we use these typical
tune-ramp rates in our simulations. At these tune ramp
rates, particle motion follows the Hamiltonian flow, or
the motion is “adiabatic.”
Now, we study the scaling properties of the FEG

vs accelerator parameters. Figure 3 shows results of
simulations with ǫxi = ǫzi. The FEGs depend essen-
tially on a single effective resonance strength parameter
Geff = G1,−2,ℓ

√
ǫxi/

√

|∆(νx − 2νz)/∆n|, but are inde-
pendent of detuning parameters. Note that the maxi-
mum FEG for equal initial emittances is about 1.5. This
means that the maximum fractional emittance growth in
the vertical plane is about 1.0, and the maximum frac-

tional horizontal emittance reduction is about 0.5.

FIG. 3: The FEG vs the effective resonance parameter for
initially equal-emittance-Gaussian-distributed beams. Note
that the FEG depends only on a single effective resonance
strength: G1,−2,ℓ

√
ǫxi/

√

|∆(νx − 2νz)/∆n|. The FEGs are
independent of the detuning parameters α11.

Figure 1 shows that there are more particles in lower J1
actions when ǫxi <

1
2ǫzi. Thus the horizontal emittance

will increase and the vertical emittance will decrease.
Figure 4 shows the emittance exchange for ǫxi = 1 πµm,
and ǫzi = 10 πµm with |∆(νx−2νz)/∆n| = 8×10−5. The
horizontal emittance increases while the vertical emit-
tance decreases with the FEG ∼ 4.5.

FIG. 4: The resonance crossing rate is −8.0 × 10−5 for a
third-integer difference resonance of strength G1,−2,ℓ = 3.02

(πm)−1/2 and ǫxi = 1.0 πµm, and ǫzi = 10.0 πµm. The
detuning parameter is fixed at α11 = 600 (πm)−1.

According to the FEG scaling law in Eq. (8), when
2ǫxi ≫ ǫzi, the maximum FEG is ∼ 2ǫxi/ǫzi, and when
2ǫxi ≪ ǫzi, the maximum FEG is ∼ ǫzi/(2ǫxi). Fig-
ure 5 gathers a large amount of simulation data, depict-
ing the maximum FEG vs ǫxi/ǫzi. The dashed and dot-
ted lines show the asymptotic maxima FEG = 2ǫxi/ǫzi
and ǫzi/(2ǫxi) of Eq. (8). At ǫxi ≈ 1

2ǫzi, there is lit-
tle emittance exchange. Although Fig. 1 is based on
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bi-Gaussian distribution, the FEG scaling law works for
other distributions as well. The circle, rectangular and
diamond symbols in Fig. 5 represent results for a beam
with an initial uniform beam distribution in both or one
of the horizontal and vertical phase spaces. If the initial
beam distribution in the horizontal and vertical planes
are independent, and has the same functional form, i.e.,
ρ3(Jx, Jz) = f(Jx/ǫx)f(Jz/ǫz), the corresponding beam
distribution function ρ3a(u, J2) will be symmetric in the
u-variable at ǫx ≈ 1

2ǫz. Thus there will be no net emit-
tance exchange because there are equal number of par-
ticles that increase or decrease their actions in crossing
the resonance.

FIG. 5: The maximum fractional emittance growth (FEG) vs
ǫxi/ǫzi. The dashed and dotted lines correspond to FEGmax ≈
2ǫxi/ǫzi and ǫzi/2ǫxi. Note that near ǫxi ∼ 0.5ǫzi, there is
no emittance exchange. The circle, rectangular and diamond
symbols correspond to uniform distribution in both or one of
the transverse phase spaces, and all other data are obtained
from bi-Gaussian distribution.

In conclusion, multi-particle simulations and Hamil-
tonian dynamics are employed to study beam property
in crossing a Walkinshaw resonance. We find that the

emittance growth obeys a scaling law depending essen-
tially on a dimensionless effective resonance strength pa-
rameter: G1,−2,ℓ

√
ǫxi |∆(νx − 2νz)/∆n|−1/2 (see Fig. 3),

which is detuning-parameter independent. The fractional
emittance growth (FEG) reaches a maximum saturation
value at large effective resonance strengths. The maxi-
mum FEG depends essentially on ǫxi/ǫzi. For 2ǫxi ≫ ǫzi,
the maximum FEG is 2ǫxi/ǫzi, and for 2ǫxi ≪ ǫzi, the
maximum FEG is ǫzi/(2ǫxi) as shown in Fig. 5. If the
initial emittances of the beam are known, one can pre-
dict the emittances after crossing a strong third-integer
coupling resonance.
To avoid emittance exchange in passing through a

Walkinshaw resonance, we can prepare a beam with an
initial horizontal emittance equal to half of the vertical.
The minimization of emittance growths and beam loss
crossing a Walkinshaw resonance could hopefully lead to
an improvement in beam currents in circular accelerators.
Now we consider a beam with equal initial horizon-

tal and vertical emittance ǫ0, After passing through a
strong νx − 2νz = ℓ resonance, the final emittances will
be ǫx ≈ 1

2ǫ0 and ǫz ≈ 2ǫ0. If the vertical aperture is
not an issue, the smaller horizontal emittance can pass
through a smaller magnetic/electric septum gap. If this
resulting beam is made to pass through the same reso-
nance again at a similarly strong strength, the horizontal
emittance and vertical emittance will be exchanged again
and restored to their original values; i.e., the final beam
emittances are ǫx ≈ ǫz ∼ ǫ0. All these predictions can be
tested experimentally in cyclotrons or circular accelera-
tors.
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