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We present an ab initio determination of the spin response of the unitary Fermi gas. Based on
finite temperature quantum Monte Carlo calculations and the Kubo linear-response formalism, we
determine the temperature dependence of the spin susceptibility and the spin conductivity. We show
that both quantities exhibit suppression above the critical temperature of the superfluid-to-normal
phase transition due to Cooper pairing. The spin diffusion transport coefficient does not display
a minimum in the vicinity of the critical temperature and drops to very low values Ds ≈ 0.8 ~/m
in the superfluid phase. All these spin observables show a smooth and monotonic behavior with
temperature when crossing the critical temperature Tc, until the Fermi liquid regime is attained at
the temperature T ∗, above which the pseudogap regime disappears.

PACS numbers: 03.75.Ss, 05.60.Gg, 51.20.+d, 05.30.Fk

There are basically two flavors of superfluids: fermionic
and bosonic. The bosonic superfluid is realized when
typically weakly interacting bosons condense and form a
Bose-Einstein condensate (BEC). The typical fermionic
superfluid is of Bardeen-Cooper-Schrieffer (BCS) type,
where fermions in time-reversed orbitals form weakly-
bound Cooper pairs and with increasing interaction
strength turn into a BEC of Cooper pairs. The BEC su-
perfluidity vanishes when the condensate fraction ceases
to have a macroscopic value with increasing tempera-
ture and the long-range coherence is lost. On the other
hand, when a BCS superfluid undergoes a phase transi-
tion to a normal state, Cooper pairs break due to thermal
motion and there are no more bosonic constituents left
to form a BEC. With the experimental confirmation of
the BCS-BEC crossover in fermionic cold gases [1, 2], it
became clear that one can have a new kind of system
where both bosonic and fermionic superfluid features are
present at the same time. The paradigmatic example is
the unitary Fermi gas (UFG) where, unlike the BCS or
BEC cases, the inter-particle interaction is strong, and
the binding energy of the Cooper pair is comparable to
the Fermi energy. It is believed that the unpolarized uni-
tary Fermi gas, in a temperature region just above the
critical temperature Tc, exists in a state which is neither
fully bosonic nor fully fermionic in character, called the
pseudogap state, widely studied in high-Tc superconduc-
tors (HTSC) [3, 4]. This is a temperature regime where
a significant fraction of the Cooper pairs is present, even
though the long-range coherence among them is lost, as
is superfluidity. While the existence of the pseudogap
regime in HTSC is an experimentally well known fact,
the nature of the corresponding regime around the crit-
ical temperature Tc of the UFG has remained an open
question. It is a tantalizing question, whether the pseu-
dogap regime exists in dilute neutron matter as well. The
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FIG. 1: (Color online) Temperature evolution of the density
of states profiles, extracted from the QMC simulations [7].
The (blue) lines marked T ∗

≈ 0.2 εF correspond to the onset
of the pseudogap regime, the (red) line marked Tc = 0.15 εF
corresponds to the critical temperature. The profiles for T =
0.21 εF and T = 0.12 εF are compared with the density of
states for a Fermi liquid (dashed lines).

properties of the neutron superfluid in the neutron star
crust are very similar to those of the unitary gas, as high-
lighted by Bertsch’s 1999 Many-Body X challenge. The
reliable calculation of the neutrino processes in neutron
stars, controlled by the neutron spin response [5], is a
long standing problem and the present results will likely
shed new light on these phenomena.
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The most striking feature of the pseudogap regime is
the behavior of the fermionic density of states, which
shows a dramatic depletion at the Fermi level. This was
confirmed to exist in Quantum Monte Carlo (QMC) sim-
ulations of the UFG [6, 7], see Fig. 1, as well as in ex-
periments [8–10]. The transition from a pseudogap to a
normal state in the UFG is somewhat similar to a gas-
plasma transition, where no discontinuities are observed,
which makes it difficult to observe. Indeed, no observable
imprints on the thermodynamic properties have been de-
tected in experiments so far [11, 12], while at the same
time theory also predicts none [6, 7, 13, 14]. A direct
measurement of the local density of states of a UFG in
a trap is desirable. However, one can suggest different
kinds of measurements as well. A strongly paired, but
not necessarily superfluid, system would respond qualita-
tively differently to an external probe than a non-paired
system, if one were to try to separate the two fermions
in a pair. In particular, in a paired system the spin sus-
ceptibility and spin conductivity should be significantly
suppressed when compared to the unpaired regime. One
should therefore observe a marked difference between the
response of a system in the pseudogap regime from a nor-
mal Fermi liquid one, which is the expected behavior at
temperatures greater than T ∗.

Inspired by recent measurements of various spin re-
sponses like the spin susceptibility [15], spin transport
coefficients [16] or dynamic (spin) structure factors [17],
we present here an ab initio evaluation of the spin suscep-
tibility χs and the spin conductivity σs for unpolarized
homogeneous unitary Fermi gas. We show that both of
these quantities carry a strong signal indicating survival
of the Cooper pairs above the critical temperature. Our
new results are consistent with previous studies [6, 7],
where the existence of the pseudogap regime was found
between the critical temperature Tc = 0.15(1) εF and
T ∗ = 0.19(2) εF , where εF = p2F /2m is the free Fermi gas
energy, pF = ~ (3π2n)1/3 is the Fermi momentum corre-
sponding to the total particle number density n. While
in the previous estimation of the T ∗ temperature finite
resolution of the method provided only the lower bound,
the analysis of the spin responses allows us to provide
a significantly more accurate interval for the pseudogap
onset.

Moreover, the computed responses allow us to ex-
tract the temperature dependence of the spin diffusion
coefficient from first principle calculations. There has
been considerable speculation as to whether the trans-
port coefficients possess universal lower bounds imposed
by quantum mechanics. The best known example is a
conjecture formulated by Kovtun, Son, and Starinets of
the existence of a lower bound η/s > ~/(4πkB) on the ra-
tio of the shear viscosity η to the entropy density s for all
fluids [18]. While in our previous work [19] we found that
PIMC is compatible with a well defined minimum for the
η/s ratio in the vicinity of the critical temperature, here

we show that the spin diffusion does not exhibit a similar
minimum as a function of temperature.

To determine the spin properties of the UFG we em-
ploy the Path Integral Monte Carlo (PIMC) technique on
the lattice, which provides numerically exact results, up
to quantifiable systematic uncertainties (for details see
Ref. [13]). Since the pseudogap regime is expected to ex-
ist in a rather small temperature region 0.15 . T/εF .
0.2 it needs to be checked if it survives when the ther-
modynamic V → ∞ and continuum n → 0 limits are re-
covered. This step is of great importance as the critical
temperature approaches the value Tc = 0.15(1) εF only
in the thermodynamic and continuum limits [13]. At the
same time the temperature T ∗ above which there are no
Cooper pairs left, and which reflects short range corre-
lations among particles, does not show a similar strong
volume dependence. To check the stability of the re-
sults, as the thermodynamic and continuum limit are
approached, we performed simulations using three lat-
tices Nx = 8, 10, 12 with corresponding average density
n ⋍ 0.08, 0.04 and 0.03, respectively. The systematic
errors related to finite volume effects as well as effective-
range corrections, are estimated to be likely ∼ 10− 15%,
while the statistical errors of the PIMC data are below
1%, see [20] for more details. Henceforth we define units:
~ = m = kB = 1.

The spin susceptibility as well as the spin conductiv-
ity can be theoretically determined using linear response
theory via the Kubo relations. The uniform static spin
susceptibility χs = ∂(n↑ − n↓)/∂(µ↑ − µ↓) is obtained
as [21]

χs = lim
q→0

1

V

∫ β

0

dτ〈ŝz
q
(τ)ŝz−q

(0)〉, (1)

where ŝz
q

= n̂q↑ − n̂q↓ represents a difference between
spin-selective particle number operators in Fourier rep-
resentation n̂qλ =

∑
p
â†λ(p) âλ(p + q), β = 1/T

is the inverse temperature and 〈. . .〉 stands for the
grand-canonical ensemble average. The imaginary-time
dependence of an operator is generated as Ô(τ) =

eτ(Ĥ−µN̂)Ôe−τ(Ĥ−µN̂), where Ĥ is the Hamiltonian of
the system, µ is the chemical potential, and N̂ is the
particle number operator. The expectation values can
be evaluated directly for q = 0. In this case the spin
operator ŝz

q=0 commutes with the Hamiltonian and the
expectation value is τ -independent. Consequently, the
QMC calculation consists in the evaluation of the expec-
tation value of a two-body operator, and the static spin
susceptibility can be computed very accurately within
our framework.

In Fig. 2, the static spin susceptibility χs in units of
free Fermi gas susceptibility χ0 = 3n/2εF is shown for
temperature range 0.1 6 T/εF 6 0.5. The results on
83, 103 and 123 lattices exhibit satisfactory agreement
with each other and no systematic trend in the data has
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FIG. 2: (Color online) The static spin susceptibility as a func-
tion of temperature for an 83 lattice solid (red) circles, 103

lattice (blue) squares and 123 lattice (green) diamonds. Ver-
tical black dotted line indicates the critical temperature of
superfluid to normal phase transition Tc = 0.15 εF . For com-
parison Fermi liquid theory prediction and recent results of
the T -matrix theory produced by Enss and Haussmann [25]
are plotted with solid and dashed (brown) lines, respectively.
The experimental data point from Ref. [15] is also shown.

been detected as we approach the thermodynamic and
the continuum limit. For temperatures 0.25 εF−0.5 εF no
strong temperature dependence of the spin susceptibility
is observed. The latter is well below the susceptibility
of the free Fermi gas with a value around χs ≈ 0.45χ0,
which is in qualitative agreement with the Fermi liquid
picture as well as results of other groups [22–26]. In the
interval T ∗ = 0.20 − 0.25 εF we find beginning of pro-
nounced suppression of the spin susceptibility, which we
associate with the existence of Cooper pairs in the sys-
tem. Note that already at Tc the spin susceptibility is
about half its value at the onset of suppression (roughly
T = 0.25 εF ). Thus, two temperature scales are clearly
distinguishable: the critical temperature of superfluid-to-
normal phase transition Tc = 0.15 εF , and the onset of
the Cooper-pair formation T ∗.

The static spin conductivity σs represents another
quantity which is expected to be strongly affected by
the presence of the Cooper pairs as it measures re-
sponse of the spin current js = j↑ − j↓ once the weak
external F force which couples with opposite signs to
the two spin populations is applied to the system, i.e.
js = σsF . In order to extract the spin conductivity we
consider the Kubo formula, which relates the frequency-
dependent spin conductivity to the corresponding spec-

tral density: σs(ω) = πρ
(jj)
s (q = 0, ω)/ω; while the

static spin conductivity is defined in the limit of zero
frequency: σs = limω→0+ σs(ω). The spectral density

ρ
(jj)
s (q, ω) is related to the imaginary-time (Euclidean)
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FIG. 3: (Color online) The spin drag rate Γsd = n/σs in
units of Fermi energy as a function of temperature for an 83

lattice solid (red) circles, 103 lattice (blue) squares and 123

lattice (green) diamonds. Vertical black dotted line locates
the critical temperature of superfluid to normal phase tran-
sition. Results of the T -matrix theory are plotted by dashed
(brown) line [25]. The inset shows extracted value of the
contact density as function of the temperature. The (purple)
asterisk shows the contact density from the QMC calculations
of Ref. [29] at T = 0.

current-current correlator provided by the PIMC method

G(jj)
s (q, τ) =

1

V
〈[ĵz

q↑(τ) − ĵz
q↓(τ)][ĵz

−q↑(0) − ĵz
−q↓(0)]〉,

(2)
by inversion of the spectral relation

G(jj)
s (q, τ) =

∫ ∞

0

ρ(jj)s (q, ω)
cosh [ω(τ − β/2)]

sinh (ωβ/2)
dω, (3)

where ĵz
qλ(τ) stands for the third component of Fourier

representation of the spin-selective current operator. To
invert Eq. (3) we have applied the methodology which
combines two complementary methods: singular value
decomposition (SVD) and maximum entropy method
(MEM), both described in Ref. [27]. An additional a pri-

ori information include the non-negativity of the spin
conductivity σs(ω) > 0, a Lorentzian-like structure at
low frequencies (Drude model) and the asymptotic tail
behavior σs(ω → ∞) = C/(3πω3/2), where C is Tan con-
tact density [25]. The contact density was extracted from
the tail of the momentum distribution n(p) ∼ Cp−4, us-
ing a technique similar to that of Ref. [28]. As the univer-
sal decay of the tail distribution starts around p/pF ≈ 2,
we were unable to extract the contact for the Nx = 8
lattice. In that case we used the value of C extracted
from the Nx = 10 lattice. The inset of Fig. 3 shows the
temperature dependence of the contact density used as
a priori information. For calculations in the Nx = 12
lattice, we found that the signal-to-noise ratio for the
correlators at T < 0.16 εF is insufficient to perform a
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FIG. 4: (Color online) The spin diffusion coefficient obtained
by the Einstein relation Ds = σs/χs as function of tempera-
ture. The notation is identical to Fig. 3.

stable reconstruction of the spectral density. For more
details about the reconstruction process see [20].

In Fig. 3 we present the inverse of the static spin con-
ductivity called the spin drag rate Γsd = n/σs, which
is the rate of the momentum transfer between fermions
with opposite spins. For T = 0.25 εF − 0.5 εF , no strong
temperature dependence is observed. For all three lat-
tices the spin drag rate exhibits a significant enhance-
ment above Tc, in the interval T ∗ = 0.20−0.25 εF , which
is consistent with the occurrence of the spin susceptibil-
ity suppression. Such an enhancement is expected for a
system with strong correlations between particles of op-
posite spins.

Finally, the computed spin susceptibility and spin con-
ductivity allow us to extract the spin diffusion coefficient
Ds in a fully ab initio manner. In the hydrodynamic
regime it defines the proportionality between the spin
current js and spatially varying polarization by Fick’s
law js = −Ds∇(n↑ − n↓). The spin diffusivity Ds can
be related to the spin conductivity and the spin sus-
ceptibility by the Einstein relation Ds = σs/χs. In
Fig. 4 we show the temperature evolution of the spin
diffusion coefficient. In the normal phase, for temper-
atures 0.25 εF − 0.5 εF the diffusivity is approximately
constant Ds ≈ 1.8. Surprisingly, we find that the spin
diffusion coefficient decreases substantially when the sys-
tem enters the pseudogap regime, acquiring eventually a
value around Ds ≈ 0.8 in the superfluid phase. Such a
low value can be understood as a quantum limit for this
transport coefficient. The bound originates from kinetic
theory, where Ds ∼ vl, v is the average particle speed,
and l is the mean free path. For a strongly correlated
system, the product of v ∼ pF ∼ n1/3 and l ∼ n−1/3

cancels the density dependence, giving Ds ∼ 1.

In Ref. [30] the existence of a minimal value of the dif-
fusivity was predicted for a temperature somewhat be-

low the Fermi temperature, within Landau-Boltzmann
theory. Recently, it was reported that Luttinger-Ward
theory sets the minimum Ds ⋍ 1.3 at T = 0.5 εF [25].
Our ab initio calculations do not confirm the presence
of a minimum for the spin diffusion coefficient down to
T = 0.1 εF , and they do not rule out possibility that
the diffusivity Ds decreases further when temperature is
lowered.

Our results for the spin susceptibility and the spin
drag rate deviate from the recent measurements of MIT
group [16] extracted from fully polarized cloud collisions.
This technique, in which two noninteracting clouds col-
lide, and in which pairs do not exist and likely are not
formed, is less suitable to probe the low temperature
regime, where pairs already exist and their presence is
of crucial importance. Pair formation in such an exper-
iment would require three-body collisions. Recent the-
oretical simulations [23, 31, 32] demonstrated that this
experiment can be explained assuming that the measure-
ment explores a non-equilibrium state associated with a
quasi-repulsive Fermi gas and two-body collisions alone.
On the other hand, the technique based on speckle imag-
ing of spin fluctuations, used to measure the spin sus-
ceptibility of the system in thermal equilibrium [15], is
in remarkable agreement with our theoretical results, see
Fig. 2.

In summary, we have presented results for the spin
response of the UFG at finite temperature, obtained
through an ab initio PIMC approach. The spin sus-
ceptibility and the spin conductivity bear signatures of
Copper-pair formation above the critical temperature
Tc ⋍ 0.15 εF up to T ∗ ≈ 0.20−0.25 εF . The spin diffusion
coefficient does not display a minimum in the vicinity of
the critical temperature, but instead drops to very low
values Ds ≈ 0.8 in the superfluid phase. We showed that
the spin response of a unitary Fermi gas is not affected
by the superfluid to normal transition, but only by the
presence of Cooper pairs, and all these spin observables
show a smooth and monotonic behavior up to the tem-
perature T ∗, where the pseudogap cease to show up in
the density of states.
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Note added. Similar studies of χs(T ) and density of

states in an attractive 2D Hubbard model (in the context
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of cuprates) have been performed in Refs. [33]. There are
however qualitative differences between the physics of the
attractive 2D Hubbard model and dilute Fermi gases in
2D, which are practically non-interacting, see chapter 7
in Ref. [2].
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