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The modern expressions for polarization P and orbital magnetization M are k-space integrals. But
a genuine bulk property should also be expressible in r-space, as unambiguous function of the ground-
state density matrix, “nearsighted” in insulators, independently of the boundary conditions—either
periodic or open. While P—owing to its “quantum” indeterminacy—is not a bulk property in this
sense, M is. We provide its r-space expression for any insulator, even with nonzero Chern invariant.
Simulations on a model Hamiltonian validate our theory.
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The macroscopic polarization P and magnetization
M are essential ingredients of the in-medium Maxwell
equations, but microscopic understanding of P and of
the orbital contribution to M was achieved only in recent
times [1–6]. Their elementary definition for a finite
sample is

P =
d

V
=

1

V

∫
dr rρ(micro)(r) (1)

M =
m

V
=

1

2cV

∫
dr r× j(micro)(r). (2)

Here and in the following we indicate with M the orbital
term only; ρ(micro)(r) and j(micro)(r) are the microscopic
charge and current densities, and V is the sample volume.
The previous expressions are clearly dominated by
surface contributions, while instead phenomenologically
P and M are bulk properties: from this viewpoint,
the two properties appear as closely analogous. The
modern theories of polarization and magnetization (in
their simplest formulations) address a crystalline system
of independent electrons; therein, both P and M are
expressed as a Brillouin-zone integral of Bloch-orbital
matrix elements [1–8]; even the k space expressions for P
and M share many analogies. The modern theories are
clearly based on periodic boundary conditions (PBCs):
the sample has no boundary, and the properties are
“bulk” by definition.
In this Letter we aim instead at r-space definitions,

but where—at variance with Eqs. (1) and (2)—the choice
of the boundary conditions becomes irrelevant in the
limit of a large sample. For a system of independent
electrons the ground state is uniquely determined by
the one-particle density matrix, a.k.a. ground-state
projector P(r, r′); it is a “nearsighted” [9–11] operator,
exponentially decreasing with |r − r′| in insulators even
when the Chern invariant is nonzero [12]. Our aim is
therefore to express P and M as local properties in r

space, directly in terms of P(r, r′) in the bulk of a sample,
independently of the boundary conditions. We show that
such aim cannot be attained for P, while we provide
an explicit expression for M, even for insulators with

nonzero Chern invariant (“Chern insulators”). Tinkering
with the boundaries may alter the value of P, but not
of M: this finding is in agreement with a very recent
work by Chen and Lee, based on completely different
arguments [13].

We validate our approach by means of simulations on
a model Hamiltonian, performed on finite samples with
open boundary conditions (OBCs). One outstanding
virtue of our formula is that it converges to the bulk
M value much faster than the elementary definition of
Eq. (2): see Fig. 4 below; another virtue is that it could
be applied with no major changes to disordered and/or
macroscopically inhomogeneous systems.

The modern theory of polarization addresses the
difference in polarization ∆P between two states of the
material that can be connected by an adiabatic switching
process. This is clearly a bulk property, provided the
system remains insulating at all times: ∆P in fact
coincides with the integrated current flow across the
material, which in turn is easily expressed in terms of
the evolution of P(r, r′) along the switching. But “P
itself” is not a bulk property in the above sense: a basic
tenet of the modern theory of polarization states that
the bulk electron distribution determines P only modulo

a “quantum”, whose value depends on the boundary
[1, 2]. Therefore it is impossible to evaluate P for a
homogeneous sample knowing P(r, r′) in its bulk only:
examples of systems with the same bulk and different P
values are e.g. in Ref. [14].

The modern theory of magnetization, instead, ad-
dresses “M itself” directly, and is not affected by any
quantum indeterminacy. Therefore an expression for M
in terms of the bulk density matrix (either PBCs or
OBCs), ergo boundary-independent, is not ruled out.
Here we are providing such expression: in any macro-
scopically homogeneous sample M is the macroscopic
average—defined as in electrostatics [15]—of a local func-
tion M(r), uniquely defined in terms of the density ma-
trix in a neighborhood of r. We draw attention to the fact
that, in a polarized/magnetized solid, the charge and cur-
rent densities ρ(micro)(r) and j(micro)(r) are well defined,
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while a “dipolar density” (either electric or magnetic)
cannot be unambiguously defined [16, 17]; ourM(r) plays
indeed the role of a magnetic dipolar density, although
only its macroscopic average bears a physical meaning.
The main concepts are more clearly formulated in the

simple two-dimensional (2D) case: electrons in the xy
plane and magnetization M along z. Eq. (2) reads, for a
2D macroscopic flake of independent electrons

M = −
ie

2~cA

∑
ǫn<µ

〈ϕn| r× [H, r] |ϕn〉 (3)

= −
ie

2~cA

∑
ǫn<µ

( 〈ϕn|xHy |ϕn〉 − 〈ϕn| yHx |ϕn〉 )

where A is the sample area, H is the single-particle
Hamiltonian, |ϕn〉 are the orbitals, and µ is the Fermi
level; single occupancy is assumed (“spinless electrons”).
Eq. (3) only applies to a system that remains gapped
(as a whole) in the large-A limit, and therefore does not
apply, as such, to Chern insulators; more about this will
be said below. Eq. (3) is a trace; since M is real,

M = Im iM =
e

~cA
Im Tr {PxHyP}, (4)

where P is the ground-state projector. In the following,
we also need its complement Q, i.e.

P =
∑
ǫn<µ

|ϕn〉〈ϕn|, Q = 1− P . (5)

If we write H = PHP + QHQ, it is rather
straightforward to transform Eq. (4) into

M =
e

~cA
Im Tr {PxQHQyP −QxPHPyQ}. (6)

A different derivation of the same expression is due
to Souza and Vanderbilt [6]; they also show that
Eq. (6) provides the link with the modern theory of
magnetization. In fact the position operator r is ill
defined within PBCs [18], but becomes harmless and well
defined within both OBCs and PBCs when “sandwiched”
between a P and a Q. It is enough to perform the
thermodynamic limit in Eq. (6), and then cast P and
Q in terms of Bloch orbitals, in order to arrive at the k-
integral expression of the modern theory [3–5] for normal
insulators (Chern number C = 0).
In order to get a local description we write Eq. (6) as

M =
1

A

∫
dr M1(r), (7)

M1(r) =
e

~c
Im 〈r| PxQHQyP |r〉

−
e

~c
Im 〈r| QxPHPyQ |r〉. (8)

There is a paramount difference between our starting
Eq. (3) and Eq. (7): while the former integral, like

FIG. 1. Chern number C of the bottom band of the Haldane
model as a function of the parameters ϕ and ∆/t2 (t1 =
1, t2 = 1/3). The subsequent discussion and figures concern
the points (a) and (b) only

FIG. 2. A typical flake, with 2550 sites, showing the
honeycomb lattice of the Haldane model [19]. The 50 sites
on the horizontal line will be used in all the subsequent
one-dimensional plots. Black and grey circles indicate
nonequivalent sites (with onsite energies ±∆)

Eq. (2), is dominated by boundary contributions, the
latter expression is “bulk” in the above defined sense. In
order to evaluate M for a macroscopically homogeneous
region in the bulk of a sample, within either OBCs or
PBCs, it is enough to take the macroscopic average of
M1(r) in that region.
We demonstrate this key property of the local function

M1(r) by performing simulations on the Haldane model
Hamiltonian [19]; it is comprised of a 2D honeycomb
lattice with two tight-binding sites per primitive cell
with site energies ±∆, real first-neighbor hoppings t1,
and complex second-neighbor hoppings t2e

±iϕ. This
model has been previously used in several simulations,
providing invaluable insight into orbital magnetization
[4, 5, 20] as well as into nontrivial topological features of
the electronic wavefunction [12, 19–23]. In the following,
we invariably choose t1 = 1, t2 = 1/3. At half filling
the system is insulating; it is either a normal insulator
or a Chern insulator depending on the ∆ and ϕ values,
according to the phase diagram shown in Fig. 1.
We illustrate the case of a normal insulator (C = 0),

choosing the point (a) in the phase diagram (∆/t2 =
3.67, ϕ = 0.1π). We address, within OBCs, finite flakes
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FIG. 3. Local magnetization for a normal insulator—point
(a) in the phase diagram—along the line shown in Fig. 2.
Top panel: site contributions to the trace in Eq. (4). Middle
panel: first term in Eq. (8). Bottom panel: second term in
Eq. (8). Notice the different scales.

FIG. 4. Convergence of M with the flake size, point (a) in the
phase diagram. Filled circles: total magnetic moment divided
by the flake area, Eqs. (4) and (7). Open circles: average of
M(i) over the two central sites in the flake. All flakes have
the same aspect ratio as in Fig. 2; the abscissae indicate the
lenght of the arm-chair edge in lattice parameter units (75 in
Fig. 2).

of rectangular shape cut from the bulk, as shown in Fig.
2. We separately plot in the two lowest panels of Fig. 3
the two terms in Eq. (8): they correspond to the “local
circulation” and “itinerant circulation”, respectively, in
the language of Refs. [4, 5]. It is easily realized that both
are bulk, i. e. their average over any bulk cell coincides
(in the large-A limit) with the average over the whole
sample. The top panel of Fig. 3 shows, by contrast, the
site contributions to Eq. (4). Although the trace is the
same as in Eq. (7), the difference is striking: here most
of the magnetization is due to the boundary. We then
show in Fig. 4 the convergence of the computed M with
the flake size. The figure shows that the macroscopic
average of M(i) in the flake center converges much faster
than the trace, Eqs. (4) and (7). The former converges
exponentially, owing to the density matrix decay; the

latter shows a 1/L convergence, because the number of
bulk sites scales as L2, while the number of boundary
sites scales as L.
Next, we address Chern insulators. Therein the

spectrum of a finite sample within OBCs becomes gapless
in the large sample limit; when µ is in the bulk gap,
the bulk is insulating but M depends on µ, owing to
boundary currents. We are going to prove that even this
extra contribution to M is bulk in the above sense.
The macroscopic magnetization of a 2D macro-

scopic sample at fixed chemical potential is M =
−(1/A) ∂G/∂B, where G is the Gibbs grand potential.
At zero temperature G = U − µN , and µ is the Fermi
level:

M = −
1

A

∂U

∂B
+

µ

A

∂N

∂B
= M1 +M2. (9)

It is easy to show, using the Hellmann-Feynman theorem,
that the first term M1 in Eq. (9) coincides with Eq. (3),
hence also with Eq. (7). Defining the areal density
n = N/A, the second term in Eq. (9) is M2 = µ∂n/∂B;
we then make contact with Středa’s formula [24]

∂n

∂B
=

eC

2π~c
=

C

φ0
, (10)

where C is the Chern number and φ0 = hc/e is the flux
quantum. The formula was proved for a crystalline 2D
system within PBCs [3, 25]. Its OBCs analogue displays
subtle features, since for an isolated sample the number
of electrons N stays constant: we are going to show that
the boundary acts as a reservoir, in such a way that
the density n in the bulk region obeys indeed Středa’s
formula.
Even the Chern number admits a local description in

real space [23], and can be directly expressed in terms of
the ground state density matrix within either PBCs or
OBCs. Here we define the dimensionless function [26]

C(r) = 4π Im 〈r| QxPyQ |r〉, (11)

whose macroscopic average in the bulk of a sample equals
C. Therefore the magnetization of an insulator—either
normal or Chern—obtains from the macroscopic average
of M(r) = M1(r) + M2(r) in some inner region of the
sample, where M1(r) is the same as in Eq. (8), and

M2(r) =
µ

φ0
C(r) = µ

2e

~c
Im 〈r| QxPyQ |r〉. (12)

We may also rewrite the local magnetization as

M(r) =
e

~c
Im 〈r| PxQHQyP |r〉

−
e

~c
Im 〈r| QxP(H − 2µ)PyQ |r〉. (13)

It is easy to verify that the macroscopic average of
M(r) is invariant by translation of the energy zero, i.e.
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FIG. 5. Point (b) in the phase diagram. Top panel: local
Chern number, Eq. (11). Bottom panel: B-derivative of the
density in dimensionless units, Eq. (14).

is invariant under the transformation H → H + ∆ǫ,
µ → µ + ∆ǫ, as it must be. If the thermodynamic
limit is taken before the trace, Eq. (13) can be related
to the known k-space theory for the magnetization of a
Chern insulator [5], and also to a recent reformulation
and generalization to disordered systems [27].
We stress a very crucial feature. In Eq. (7) we have

taken the trace of M1(r) over the whole sample within
OBCs; we cannot do the same with M2(r), because such
trace—as well as the trace of C(r)—identically vanishes.
We show in Fig. 5, top panel, a plot of C(i): for the sake
of simplicity we choose the very high symmetry point (b)
in the phase diagram (∆ = 0, ϕ = π/2), where the site
occupancy in the bulk region is n(i) = 1/2, and M1 = 0.
It is perspicuous that the local Chern numbers C(i) are
equal to 1 in the bulk of the sample, while they deviate
and become negative in the boundary region.
One gets the bulk magnetization M at fixed µ by

taking the macroscopic average of Eq. (13) in the relevant
sample region, for both normal and Chern insulators [28].
In the case of our tight-binding model, it is enough to
take the average over the two central sites of the flake.
In order to evaluate M there is no need of running

finite-B calculations; nonetheless it is worth showing how
Středa’s formula works within OBCs. To this aim we use
Eq. (10) in reverse: we give an alternative form for the
local Chern number as

C̃(r) = φ0
∂n(r)

∂B
, (14)

and we evaluate the B-derivative numerically. The result
is shown in Fig. 5, bottom panel, for a B value such that
the flux through the unit cell is φ = 0.001φ0. The plot of
the B-derivative of the density, as in Eq. (14), shows that
Středa’s formula holds even locally, and confirms that the
boundary region acts as an electron reservoir.
Our presentation has been limited to the 2D case for

the sake of clarity; but the 3D theory is not conceptually

different, although it requires a more complex algebra. In
conclusion, we have shown that the orbital magnetization
M in any macroscopically homogeneous region of an
insulator—even topologically nontrivial—obtains as the
macroscopic average of a magnetization density M(r),
Eq. (13), uniquely defined in terms of the density
matrix in a neighborhood of r, and insensitive to the
conditions of the sample boundary. The approach applies
with no major changes to disordered materials as well.
PolarizationP behaves differently: a polarization density
enjoying a similar property cannot be defined.
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to his attention. Work partially supported by the ONR
Grant No. N00014-11-1-0145.

[1] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47,
1651 (1993).

[2] D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48,
4442 (1993).

[3] D. Xiao, J. Shi, and Q. Niu, Phys. Rev. Lett. 95, 137204
(2005).

[4] T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta,
Phys. Rev. Lett. 95, 137205 (2005).

[5] D. Ceresoli, T. Thonhauser, D. Vanderbilt, and R. Resta,
Phys. Rev. B 74, 024408 (2006).

[6] I. Souza and D. Vanderbilt, Phys. Rev. B 77, 054438
(2008).

[7] R. Resta, Rev. Mod. Phys. 66, 899 (1994).
[8] R. Resta, J. Phys.: Condens. Matter 22 123201 (2010).
[9] W. Kohn, Phys. Rev. Lett. 76, 3168 (1996).

[10] R. Resta, J. Chem. Phys. 124, 104104 (2006).
[11] R. Resta, Eur. Phys. J. B 79, 121 (2011).
[12] T. Thonhauser and D. Vanderbilt, Phys. Rev. B 74,

235111 (2006).
[13] K.-T. Chen and P. A. Lee, Phys. Rev. B 86, 195111

(2012).
[14] K. N. Kudin, R. Car, and R. Resta, J. Chem. Phys. 127,

194902 (2007).
[15] J. D. Jackson, Classical Electrodynamics (Wiley, New

York, 1975).
[16] L. L. Hirst, Rev. Mod. Phys. 69, 607 (1997).
[17] The statement does not apply to spin magnetization,

where the “dipolar density” is trivially proportional to
the spin density.

[18] R. Resta, Phys. Rev. Lett. 80, 1800 (1998).
[19] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[20] D. Ceresoli and R. Resta, Phys. Rev. B 76, 012405

(2007).
[21] N. Hao et al., Phys. Rev. B 78, 075438 (2008).
[22] S. Coh and D. Vanderbilt, Phys. Rev. Lett. 102, 107603

(2009).
[23] R. Bianco and R. Resta, Phys. Rev. B 84, 241106(R)

(2011).
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