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We study finite-time Landau-Zener transitions at a singlet-triplet level crossing in a GaAs double
quantum dot, both experimentally and theoretically. Sweeps across the anti-crossing in the high
driving speed limit result in oscillations with a small visibility. Here we demonstrate how to increase
the oscillation visibility while keeping sweep times shorter than T ∗

2 using a tailored pulse with a
detuning dependent level velocity. Our results show an improvement of a factor ∼ 2.9 for the
oscillation visibility. In particular, we were able to obtain a visibility of ∼ 0.5 for Stückelberg
oscillations, which demonstrates the creation of an equally weighted superposition of the qubit
states.

The adiabatic theorem of quantum mechanics states
that a quantum system will remain in its instantaneous
eigenstate if the variation of a dynamical parameter is
slow enough on a scale determined by the energy sep-
aration from other eigenstates [1]. However, there are
systems for which adiabaticity breaks down resulting in
a transition between states. The first result quantifying
population change in such a process is due to independent
works by Landau, Zener, Stückelberg, and Majorana [2–
5]. They considered a coupled two-level quantum sys-
tem whose energies are controlled by a time dependent
external parameter, which is defined such that the sys-
tem exhibits an anti-crossing of magnitude ∆ = 2λ at
t = 0. If the system is prepared in its ground state, |0〉, at
t = −∞ and swept through the anti-crossing by modify-
ing the external parameter in such a way that the energy
difference is a linear function of time, ∆E = αt, then the
probability to remain in |0〉 at t = ∞ (in the diabatic

basis) is given by PLZSM = e−
2πλ

2

~α , which is known as
the Landau-Zener(-Stückelberg-Majorana) (LZSM) non-
adiabatic transition probability. Remarkably, this ele-
gant solution, although valid only in the asymptotic limit
for an infinitely long sweep, has demonstrated its accu-
racy in real physical systems for which the sweep has a
finite duration [6].

Another success of the asymptotic formulation resides
in an accurate description of LZSM interferometry. If the
system is driven back and forth across an anti-crossing,
it accumulates a Stückelberg phase that gives rise to pe-
riodic variations in the transition probability [6]. Al-
though the exact accumulated phase can only be calcu-
lated by solving the time-dependent Schrödinger equa-
tion [7–10], a scattering approach assimilating the phase
acquired in a single passage to a Stokes phase [11] nicely
reproduces experimental results obtained in supercon-
ducting qubits [12], two-electron spin qubits at a singlet
(S)-triplet (T+) anti-crossing [13, 14], and in nitrogen-

vacancy centers in diamond [15].

Focusing on spin qubits, passage through a S-T+ anti-
crossing in the energy level diagram is analogous to a
spin-dependent beam splitter [13]. There are two major
challenges relating to quantum control of such systems.
First, in two-electron double quantum dots (DQD), the
S-T+ anti-crossing is located near the (1, 1) ↔ (2, 0)
interdot charge transition, where (NL, NR) refer to the
number of electrons in the left and right quantum dots.
As a result, the singlet state involved in the spin-
dependent anti-crossing is a superposition of (1, 1) and
(2, 0) singlet states. Second, the magnitude of the split-
ting at the level anti-crossing is set by transverse hy-
perfine fields. To achieve LZSM oscillations with 100%
visibility, the sweep through the anti-crossing would have
to be performed on a timescale set by the electron spin
decoherence time T ∗

2 . As a result, there is a tradeoff be-
tween adiabaticity and inhomogeneous dephasing. While
there are several studies about dissipative adiabatic pas-
sages (see for instance [16–21]), it remains to be shown
how to make a system less sensitive to dissipation while
at the same time increasing adiabaticity.

In this Letter, we attempt to reconcile the contradic-
tion between the need for a slow (adiabatic) passage sus-
ceptible to dissipation and a fast passage minimizing dis-
sipation effects. Our approach is based on the obser-
vation that the biggest population change occurs in the
vicinity of the anti-crossing. We have developed a multi-
ramp pulse sequence that has a detuning dependent level
velocity, which we refer to as “double hat” pulse [see
Fig. 2(b)]. The slow level velocity portion of the pulse
is chosen to coincide with the passage through the S-
T+ anti-crossing in order to increase the visibility of the
quantum oscillations.

To demonstrate the advantages of “double hat” pulses,
we consider a finite-time LZSMmodel [22]. In this model,
there are three parameters that control the magnitude of
PLZSM. The dimensionless coupling η = λ/

√
α~ and the
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Figure 1. (color online) (a) DQD energy levels as a function of
the detuning, ε, near the (1, 1) ↔ (2, 0) charge transition. The
low energy hybridized singlet state and the triplet T+ form
a qubit whose dynamics can be controlled through LZSM in-
terferometry by sweeping the system through the hyperfine
mediated anti-crossing. (b) Comparison of Stückelberg oscil-
lation visibility V as a function of pulse length, ∆t, for a trape-
zoid and “double hat” pulse with same maximal amplitude.
The oscillation visibility is calculated within a finite-time
LZSM model, where it is given by V = 4PLZSM(1 − PLZSM).
“Double hat” pulses allow for more than a factor of two im-
provement while keeping ∆t < T ∗

2 .

dimensionless initial and final times Ti,f =
√

α
~
ti,f , where

ti,f are the start and stop times for the pulse relative
to t = 0 defined at the anti-crossing. The dependence
on Ti,f results in oscillations of PLZSM. In Fig. 1(b), we
plot the visibility of Stückelberg oscillations, given by
V = 4PLZSM(1 − PLZSM), as a function of pulse dura-
tion for trapezoid (single ramp) and “double hat” pulses.
The duration of the pulse is increased by lowering the
level-velocity α. For the “double hat” pulse, only the
slow level velocity is changed. To be consistent with the
regime studied in experiments, we choose λ = 50 neV and
energy differences on the order of the Zeeman splitting
(−∆Ei = ∆Ef = 2.5µeV). The results demonstrate that
“double hat” pulses can improve the oscillation visibility
while maintaining a short pulse duration. The oscilla-
tion visibility is enhanced because “double hat” pulses
allow a passage through the anti-crossing with a slower
level velocity α as compare to trapezoid pulses. The os-
cillatory behavior of the results are a consequence of the
finite-time LZSM model.

Ideally, one would like the visibility to be unity, which

corresponds to the perfect beam splitter limit, PLZSM =
0.5. Its achievement would imply the possibility of real-
izing the Hadamard gate, which is essential to perform
certain quantum algorithms (e.g. Shor’s period finding
algorithm [23]). Optimization methods to obtain high-
fidelity adiabatic passages (i.e. PLZSM = 0) have already
been studied [24].
We measure and model LZSM transitions at the S-T+

anti-crossing for finite duration sweeps. Measurements
are performed on a GaAs/AlGaAs heterostructure that
supports a two-dimensional electron gas located 110 nm
below the surface of the wafer. We use a triple quantum
dot depletion gate pattern, where two of the dots are
configured in series as a DQD and the third dot serves as
a highly sensitive quantum point contact charge detec-
tor [13, 25]. The DQD is configured in the two-electron
regime, where the electrons can either be separated in the
(1, 1) configuration or localized on a single quantum dot,
forming the (2, 0) charge state. In this regime, the spin
states are the singlets S(2, 0) and S(1, 1) and the (1,1)
triplet states T+, T0, and T−. Interdot tunnel coupling τ
results in hybridization of the charge states at zero detun-
ing with a resulting splitting of magnitude 2

√
2τ between

a ground and excited state singlet, that we respectively
denote S and S′. An external magnetic field is applied
perpendicular to the sample, resulting in Zeeman split-
ting of the triplet states, as depicted in Fig. 1(a). The
hyperfine interaction between electron and nuclear spins
results in an anti-crossing between S and T+ located at
εc. The energy difference at the anti-crossing, ∆HF, is
set by transverse hyperfine fields [26].
Simulated interference patterns are obtained by

solving the master equation ρ̇ = − i
~
[H, ρ] +

1
2

∑3

i=1

([

Liρ, L
†
i

]

+
[

Li, ρL
†
i

])

[27]. Here, the Hamil-

tonian H describes the dynamics in the vicinity of the
S-T+ anti-crossing and is given by [28],

H(t) = ES(t)|S〉〈S|+ET+
|T+〉〈T+|+f(t) (|S〉〈T+|+ h.c) ,

(1)
where ES is the unperturbed singlet energy, ET+

=
g∗µB(B + Bz

HF,1 + Bz
HF,2) is the triplet energy, with

g∗ = −0.44 the effective Landé g-factor, µB the Bohr
magneton, B the external magnetic field, and Bz

HF,j the
z-component of the hyperfine field in dot j = 1, 2. The
effective coupling f(t) between electronic spin states de-
pends on the hyperfine interaction with nuclear spins and
on the charge state. It can be written as f(t) = c(t)λ,
with c(t) the time-dependent (1, 1) charge amplitude and
λ the hyperfine matrix element between S(1, 1) and T+.
The Lindblad operators Li are given by L1 =

√

Γ+σ+,

L2 =
√

Γ−σ−, and L3 =
√

Γϕσz . They respectively de-
scribe relaxation from excited to ground state and vice
versa with rates Γ− = γ1(n + 1) and Γ+ = γ1n due to
phonon emission and absorption, with the mean phonon
number n = (e∆E/kBT − 1)−1 and spontaneous spin re-
laxation rate γ1 = 1/T1, as well as pure dephasing with
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Figure 2. (color online) (a) Convolved pulse obtained by convolving a trapezoidal pulse with a Gaussian pulse. (b) “Double
hat” pulse with a detuning-dependent level velocity. (c) Singlet return probability PS as a function of εs and tw for B = 50mT
using convolved pulses. (d) Trace taken along εs = −1.14mV. (e) Singlet return probability PS measured with “double hat”
pulses plotted as a function of εs and tw for B = 55mT. The results exhibit a high-visibility region corresponding to slow
level velocity portion of the “double hat” pulse. (f) Trace taken along εs = −1.41mV. This value of εs corresponds to a
passage through the anti-crossing with the slow level velocity portion of the pulse. (g) and (h) Traces taken along tw = 15ns
and tw = 5.2 ns for convolved and “double hat” pulses respectively. A comparison between the different traces shows that the
“double hat” pulse allows to achieve higher visibilities, while keeping the total pulse duration below the limit set by T ∗

2 .

a rate Γϕ. A phenomenological model for the rates leads
to the relation Γ+ + Γ− = γ1 coth(∆E(t)/2kBT ), where
∆E(t) is the energy difference between the instantaneous
eigenstates of Eq. (1), kB is Boltzmann’s constant, and
T is the phonon bath temperature (∼ 10mK).

We furthermore assume that pure dephasing is mainly
due to charge noise when the qubit is in a superposition
of S(2, 0) and T+. Since these two states have differ-
ent orbital wave functions, they are sensitive to electric
fluctuations of the charge background [29, 30]. We thus

assume Γϕ = γ2(1 − |c(t)|2). The rates γ1 and γ2 are
free parameters and can be used to fit experimental re-
sults. Nuclear spin induced dynamics are obtained by
averaging solutions of the master equation over a Gaus-
sian distribution of hyperfine fields [29, 31], suitable when
the thermal energy is larger than nuclear Zeeman en-
ergy, kBT ≫ gnµnB, where gn is the nuclear g-factor and
µn is the nuclear magneton. This description of the nu-
clear state is only valid when its internal dynamics hap-
pens on characteristic time scales longer than those of
the LZSM driven system (classical approximation). The
standard deviation of the distribution of nuclear fields
Bi

HF,j (i = {x, y, z}, j = {1, 2}) is denoted by δij . The
singlet energy and charge amplitude coefficient used for
our simulations are determined experimentally [13].

We consider two types of pulses to measure the singlet
return probability PS [13]. Convolved pulses which are

obtained by convolving a trapezoid pulse with a finite
rise-time of 1.5 ns, a maximal amplitude of −2mV and a
variable width tw, with a Gaussian pulse of mean µ = 0
and standard deviation s = 3.7 ns [see Fig. 2(a)]. “Dou-
ble hat” pulses are tailored to have a detuning-dependent
level velocity at the leading and trailing edges of the
pulse. The leading edge of the pulse has a level veloc-
ity that varies in the sequence fast-slow-fast. The lead-
ing edge has a rise-time of 0.1 ns and an amplitude of
−2mV, which is followed by a slow ramp with a rise-
time tslow = 8ns and amplitude of −0.5mV. A 0.1 ns
rise-time pulse shifts the detuning to its maximal value
of −3mV, where the detuning is held constant for a time
interval tw. The lever-arm conversion between gate volt-
age and energy is ∼ 0.13 meV/mV. The trailing edge of
the pulse is simply the reverse of the leading edge [see
Fig. 2(b)]. We present in Fig. 2(c) and (d) PS as a func-
tion of final detuning εs and waiting time tw obtained
respectively with convolved pulses for B = 50mT and
“double hat” pulses for B = 55mT.

Since PS for convolved pulses exhibits features already
discussed in [13], we first only discuss the interference
pattern obtained with “double hat” pulses. Since the
maximal amplitude of these pulses does not depend on
tw, we can observe interference fringes that start at
tw = 0ns, which is a first step for manipulation within
T ∗
2 . More importantly, we notice three distinct regions
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for detunings smaller than εc ∼ −0.99mV, which corre-
spond to different magnitude ranges for PS. There is an
alternation between regions with PS ≃ 1, PS ≃ 0.4 ∼ 0.9,
and again PS ≃ 1 in correspondence with the differ-
ent level velocities associated to the “double hat” pulse.
A passage through the anti-crossing with a slower level
velocity improves the oscillation visibility, as we could
expect from the earlier considerations within finite-time
LZSM theory.

To demonstrate that a high oscillation visibility can
be achieved with “double hat” pulses, we compare two
different types of traces. First, we compare traces taken
for a fixed waiting time. This is equivalent to measur-
ing the visibility of Stückelberg oscillations for a double
passage as a function of εs. The results are presented
in Figs. 2(g) and (h) for convolved pulses and “double
hat” pulses. To compare quantitatively the visibility of
the coherent oscillations, we have to neglect the final de-
tuning εs = εc, which is strongly affected by relaxation
mechanisms [28]. We thus find that the visibility for con-
volved pulses is ∼ 0.17 and the visibility of “double hat”
pulses is ∼ 0.5, which corresponds to an improvement of
a factor ∼ 2.9. Second, we present a comparison of traces
taken at a fixed value of detuning. This is equivalent to
measuring the visibility of Rabi oscillations. The results
are presented in Figs. 2(d) and (f) for convolved pulses
and “double hat” pulses. Neglecting once more the first
oscillation dip for convolved pulses that corresponds to
the position of the avoided crossing [c.f. [13]], we find,
by considering only the first peak and relevant dip, for
convolved pulses a visibility of ∼ 0.14 and for “double
hat” pulses a visibility of ∼ 0.4. Here, there is an im-
provement of a factor ∼ 2.9, and which corresponds to
the case ∆t ≪ T ∗

2 . By considering the first three peaks
and dips, i.e. ∆t ∼ T ∗

2 , we find an improvement of ∼ 2.4.
The reduction of visibility is due to nuclear spin dephas-
ing. We expect to obtain improvements in the visibility
close to ∼ 2.9 for suitably prepared nuclear states, which
exhibit longer decoherence times. The error on the visi-
bility is on the order of the error on PS, which we find to
be ∼ 7%.

To support our experimental findings, we present in
Fig. 3 theory results obtained by using the experimental
pulse profiles measured at the output port of the wave-
form generator. We use δx,y,z1,2 = 1.00mT, γ1 = 105 s−1,

and γ2 = 108 s−1. Moreover, since the experimental data
acquisition is done at high rate with cycles of 5 µs, we
can observe a build up of nuclear polarization. To take
this into account in our model, we allow a non-zero mean
for Bi

HF,j . The mean ξz1,2 ≃ 0.0mT for Bz
HF,1,2 can be

determined from spin-funnel measurements [13]. Since
we cannot experimentally determine ξx,y1,2 , we have cho-
sen ξx,y1 = 6mT and ξx,y2 = 0mT. Our theory results
agree qualitatively with the experiments, as can be seen
when comparing interference fringes [see Figs. 3(a) and
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Figure 3. (color online) (a) Theoretical calculations of PS as a
function of tw and εs for “double hat” pulses and B = 55mT.
Theory is in qualitative agreement with the experimental
measurements. (b) Trace taken along εs = −1.41mV.

2(e)].

Our results indicate that the qubit is not only influ-
enced by nuclear spins, but that there are additional
physical mechanisms that determine the oscillation visi-
bility. Here, the contrast is also limited due to the super-
position of S(2, 0) and S(1, 1) [28]. First, the weighting of
S(1, 1) sets the amount of population that can be trans-
ferred to T+. Second, superpositions of different charge
states are susceptible to charge noise, which results in
an additional effective spin dephasing mechanism. This
dephasing channel directly competes against LZSM tun-
neling by preventing the qubit from coherently interfering
with itself. Spin relaxation also changes the balance of
populations, but due to energy scales its effect is weak
far from the avoided crossing, where kBT ≪ ∆E.

In conclusion, we have demonstrated how to increase
the visibility of quantum oscillations by enhancing the
adiabatic passage probability in the presence of dissipa-
tion. We have designed a pulse which combines both fast
and slow rise-time ramps to minimize dissipation and en-
hance adiabaticity. By considering a S-T+ anti-crossing,
we have shown that it is possible to achieve coherent su-
perposition states with high T+ population. In the more
general context of LZSM driven spin qubits, this tech-
nique allows one to perform more quantum gates within
a given decoherence time and achieve higher amplitude
rotations in the qubit space without exponentially ex-
tending the gate operation times. Our control technique
can be further improved by preparing a nuclear spin gra-
dient [34]. This will not only increase T ∗

2 , but it will also
enhance the effective coupling between spin states, thus
boosting adiabatic transition probabilities.
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[24] B. T. Torosov, S. Guérin, and N. V. Vitanov, Phys. Rev.

Lett. 106, 233001 (2011).
[25] See supplemental material for more details.
[26] J. M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby,

C. M. Marcus, M. D. Lukin, Phys. Rev. B 76, 035315
(2007).

[27] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[28] H. Ribeiro, J. R. Petta, and G. Burkard, arXiv:1210.1957

(2012).
[29] W. A. Coish and D. Loss, Phys. Rev. B 72, 125337

(2005).
[30] X. Hu and S. Das Sarma, Phys. Rev. Lett. 96, 100501

(2006).
[31] A. V. Khaetskii, D. Loss, and L. Glazman, Phys. Rev.

Lett. 88, 186802 (2002).
[32] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A.

Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson and
A. C. Gossard, Science 309, 2180 (2005).

[33] H. Ribeiro, J. R. Petta, and G. Burkard, Phys. Rev. B
82, 115445 (2010).

[34] S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, A. Ya-
coby, Nat. Phys. 5, 903 (2009).


