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We propose a new method for atomic-scale imaging of spatial current patterns in nanoscopic
quantum networks by using scanning tunneling microscopy (STM). By measuring the current flowing
from the STM tip into one of the leads attached to the network as a function of tip position, one
obtains an atomically resolved spatial image of “current riverbeds” whose spatial structure reflects
the coherent flow of electrons out of equilibrium. We show that this method can be successfully
applied in variety of network topologies, and is robust against dephasing effects.

PACS numbers: 73.63.-b, 73.22.-f

How does a current flow through a nanoscopic system?
The answer to this question is not only of fundamental
interest for our understanding of quantum phenomena
at the nanoscale, but also of great importance for the
further development of nano-electronics and the contin-
ued miniaturization of electronic devices. In mesoscopic
systems, such as quantum point contacts [1–3], quan-
tum rings [4] and DNA [5], this question has been suc-
cessfully answered by imaging spatial current paths us-
ing a scanning probe microscope (SPM) [1–7]. However,
in nanoscopic systems with sizes of tens of nanometers,
this question has only been addressed theoretically so
far [8–10]. The main experimental challenge here arises
from the SPM’s perturbing electrostatic potential, which
yields a spatial resolution that is insufficient to detect the
atomic-scale varying current patterns predicted to exist
in nanoscopic systems [8–10]. Developing an experimen-
tal method that allows atomically resolved imaging of
spatial current paths is therefore of great importance for
understanding charge transport at the nanoscale, open-
ing new possibilities to explore quantum Hall physics [11]
or weak localization effects [12] in nanoscopic systems.

In this Letter, we propose such a method by demon-
strating that atomic-scale imaging of spatial current
paths in nanoscopic quantum networks can be achieved
using scanning tunneling microscopy (STM) [13]. In par-
ticular, by measuring the current flowing from an STM
tip into one of the leads attached to the network as a
function of tip position, one reveals atomically resolved
“current riverbeds” whose spatial structure reflects the
coherent flow of electrons out of equilibrium. We show
that this method can be successfully applied in a vari-
ety of network topologies, and reproduces even complex
current patterns arising from the presence of constric-
tions. It is also robust against dephasing effects, pro-
viding correct current images even in systems where the
mean-free path is only a few lattice constants. Finally, we
demonstrate that the form of the network’s conductance
is an experimentally accessible criterion for the success of
the imaging method. Thus, the proposed STM imaging
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FIG. 1. (color online) Position of the chemical potentials of
the leads, the STM tip, and the network for cases I and II.

method provides a promising new approach for exploring
charge transport in nanoscopic systems.

We study the spatial current patterns in a nanoscale
quantum network that is attached to two leads and de-
scribed by the Hamiltonian

Hc = −t
∑

r,r′,σ

c†
r,σcr′,σ − tl

∑
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−th
∑
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Here, c†
r,σ and d†

r,σ create an electron with spin σ at site
r in the network and leads, respectively, with t, tl and th
being the respective hopping elements. While the net-
work sites can in general represent atoms, molecules or
more complex structures, we assume here that each site
contains only a single relevant electronic level. The last
two terms describe a local electron-phonon interaction in
the network with a phonon mode of energy ω0.

For different chemical potentials, µL,R in the left and
right leads (see Fig. 1, case I), a spatial current pattern
is obtained by computing the current, Ir,r′ , between ad-
jacent sites r,r′ in the network via [14, 15]
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e

~

+∞
∫

−∞

dω

2π
tr,r′Re

[

ĜK
r,r′(ω)

]

, (2)
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where, ĜK is the full Keldysh Green’s function matrix of
the entire system. For a non-interacting (g = 0) network,

one has ĜK =
(

1− ĝr t̂
)−1

ĝK
(

1− t̂ĝa
)−1

with ĝK(ω) =

2i [1− 2n̂F (ω)] Im [ĝr(ω)]. Here, t̂ is the symmetric hop-
ping matrix and the matrices ĝr,a,K contain the decou-
pled (t, th = 0) retarded, advanced and Keldysh Green’s
functions of the network sites [with gr = 1/(ω + iδ), δ =
0+] and leads. The latter are computed using a renormal-
ization procedure [16]. n̂F contains the Fermi functions
of the network and leads. Below, we use for concrete-
ness t = th = tl, δ = 0.0002t,∆µ = µL − µR = 10−4t,
and kBT = 10−5t. In the limit ∆V = ∆µ/e → 0 and
temperature T = 0, one obtains from Eq.(2) [10]

Ir,r′ = 4NLt
2
h

te2

~
Im

[

Gr
r,LG

a
L,r′

]

|ω=µc
∆V (3)

where µc = (µL + µR)/2 and NL is the density of states
(DOS) in the left lead.
To image the spatial current patterns obtained from

Eq.(2), we compute the current, IL,R(T), flowing from
an STM tip (held at potential µT ) into the left (L) or
right (R) lead as a function of tip position T (see Fig. 1,
case II). Here, HT = −tT

∑

r,σ

(

c†
r,σfσ +H.c.

)

describes
the electron tunneling between the STM tip and a single
network site with f † creating an electron in the tip, and
one appropriately extends ĜK in Eq.(2). To probe the
same states participating in the charge transport as in
case I, we set the bias between the leads to zero, i.e.,
µL,R = µ0, and require ∆VT = (µT − µ0)/e = ∆V and
µT
c = (µ0 + µT )/2 = µc with ∆V and µc from case I

(see Fig. 1). Assuming, for example, that the left lead is
connected to a single network site L only, one obtains for
∆VT → 0 and T = 0

IL(T) = 2
e2π

~
t2T t

2
hNLNT

∣

∣Gr
T,L

∣

∣

2

ω=µT
c

∆VT , (4)

where NT is the DOS in the STM tip. Note that in
contrast to IL, the total tip current, Itip = IL + IR, for
∆VT → 0 yields a spatial image of the network’s density
of states at ω = µT

c . In the experimentally realized weak
tunneling limit [13], the STM only probes but essentially
does not perturb the network’s electronic structure, and
is thus less intrusive than the SPM imaging method [1–7].
We begin by considering the spatial current pattern,

Ir,r′ , obtained from Eq.(2) (case I) in a non-interacting,
semi-infinite network with Ny = 15 rows that is con-
nected to a narrow left lead through a single site, L (see
Fig. 2). For µc = 0 [Fig. 2(a)], the Fermi velocity of
the states involved in the current transport points along
the lattice diagonal, resulting in a diagonal current path
that bounces off the sides of the quantum network [10].
A comparison of this current pattern with IL obtained
from Eq.(4) (case II) shown in Fig. 2(b) demonstrates
that IL provides an atomically resolved image of the cur-
rent paths in the network, a result which also holds when
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FIG. 2. (color online) (a) Spatial current pattern, Ir,r′ , and
(b) IL(T) for µc = 0. (c) Ir,r′ , and (d) IL(T) for µc = 2.4t.
All currents are normalized.

the network is gated, and µc is shifted, as exemplified in
Figs. 2(c) and (d) where we present the spatial current
pattern and IL, respectively, for µc = 2.4t.

A physical understanding of the good agreement be-
tween Ir,r′ and IL can be gained by considering how the
current flows from the STM tip through the network into
the left lead. Consider, for example, the case when the
STM tip is located above a network site that is part of
the coherent “current riverbed” of Fig. 2(a). In this case,
as shown in Fig. 3(a), the current injected from the STM
tip utilizes the current riverbed, resulting in a large IL
flowing from the tip to the left lead. In contrast, when
the tip is positioned away from the riverbed, as shown
in Fig. 3(b), the current injected by the STM tip cannot
flow to the left lead, but only to the wide right lead (at
infinity), since only the latter can be connected to the tip
location by a diagonal path. While the spatial form of
current riverbeds varies with the position of the leads and
the gating of the network, this physical explanation for
the success of the imaging method holds for all cases we
have considered. A more technical understanding of the
good agreement between Ir,r′ and IL, is obtained by not-
ing that their analytical expressions in Eqs.(3) and (4)
are determined by (different) combinations of the real
and imaginary parts of the non-local Green’s function,
Gr

r,L. A spatial plot of these two quantities shown in
Figs. 3(c) and (d) [for the case of Fig. 2(a)] reveals that
their spatial structures are similar on the atomic scale.
As a result, IL [see Eq.(4)] is strongly peaked in those
regions where Ir,r′ 6= 0 (the latter being predominantly
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FIG. 3. (color online) (a),(b) Spatial pattern of current flow-
ing from the STM tip to the leads for two different tip po-
sitions (indicated by yellow triangles) and µT = 5 × 10−5t,
µT
c = 0. (c) ReGr

r,L and (d)ImGr
r,L for the case of Fig. 2(a).

determined by ReGr
r,L [10]), thus explaining the good

spatial agreement between IL and Ir,r′ . The same con-
clusion also holds for the case of µc = 2.4t in Figs. 2(c)
and (d). As follows from Eqs.(3) and (4), and confirmed
by an extensive survey of networks, a spatial structure of
ReGr

r,L and ImGr
r,L that is similar on the atomic scale

is a sufficient condition for IL to provide an atomically
resolved image of current paths (see discussion below).

The STM method also images more complex current
patterns, which occur, for example, in systems with mul-
tiple constrictions, as shown for an infinitely long wire
with Ny = 13 rows in Fig. 4(a). While in the left and
right regions of this network, the current follows a di-
agonal path, a more complex current pattern exhibiting
circulating current loops [10] exists in the central region.
As shown in Fig. 4(b), IL correctly images the current
pattern in the central and right regions, but reflects the
spatial form of the density of states at µT

c in the left re-
gion. Conversely, IR (not shown) correctly images the
spatial current pattern only in the left and central re-
gions. To understand why IL,R reproduce the current
pattern only in parts of the system (while together, IL,R

yield a complete image of the current paths), we note
that when the tip is located to the right of constriction
1 [Fig. 4(b)], the current flowing from the tip into the
left lead needs to pass through the narrow opening in
constriction 1, whose role is therefore similar to that of
the narrow left lead in Fig. 2(a). As a result, IL is large
whenever the tip is located above the current riverbed
of Fig. 4(a). In contrast, in the region left of constric-
tion 1, the tip, independent of its location, can always be
connected to the wide left lead (at infinity) by a diago-
nal path, and IL ≈ Itip therefore images the density of
states. We thus conclude that in order for IL to correctly
image the current pattern in a given region, the number
of allowed current channels need to be restricted, either
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FIG. 4. (color online) (a) Spatial current pattern and (b)
IL(T) for µc = 0. (c) IL(T) for tL = 0.2. The scales in (b)
and (c) are the same. Constrictions are shown in gray. (d)
G(µc) for several tL.

through the presence of a constriction, as in Fig. 4(b), or
of a narrow lead, as in Fig. 2(c). Similar conclusions also
hold for more complex network topologies, such as the
infinitely long cylinder of circumference Ny = 54 shown
in Fig. 5(a) possessing two constrictions rotated by a rel-
ative angle of π around the cylinder axis. Here, IL [see
Fig. 5(b)] correctly images the winding current pattern
only in the central and right cylinder regions, while IR
provides the complementary current image.

To make the imaging method a versatile tool in the
study of nanoscopic networks, it is necessary to identify
an experimentally verifiable criterion for the agreement
(or the lack thereof) between IL and the current pattern.
Such a criterion is provided by the network’s overall con-
ductance, G(µc), as can be exemplified by varying the
hopping, tL, between sites in constrictions 1 and 2 [see
yellow dots in Fig. 4(c)] and the central region of the
network shown in Fig. 4. As discussed above, for tL = t,
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FIG. 5. (color online) (a) Spatial current pattern for µc = 0,
and (b) IL(T) for a cylinder (cut along the axis and flattened
out). Constrictions are shown in gray.

the STM method provides a correct spatial image of the
current pattern while at the same time, the conductance
around µc = 0 [see arrow in Fig. 4(d)] is close to the
(maximal) quantum of conductance, varying only weakly
with µc. However, with decreasing tL, the agreement be-
tween the STM image and the actual current pattern (the
latter remaining qualitatively unchanged) worsens in the
central region and is completely lost around tL = 0.2t
[see Fig. 4(c)]. This break down is accompanied by a
qualitative change in G(µc): it becomes sharply peaked
around µc = 0, and its overall magnitude decreases. Both
changes possess the same origin: for tL → 0, only a sin-
gle state contributes to the charge transport at µc = 0 in
the central region, implying that G(µc) becomes sharply
peaked while the overall magnitude of ImGr

r,L(µc) scaling

with δ−1 becomes much larger than that of ReGr
r,L(µc).

As a result, IL is dominated by ImG and therefore does
not correctly image the current pattern, whose spatial
form is in general determined by ReG [10]. We find
that the onset for the break down of the imaging method
occurs when the widths of the peaks in G(µc) become
less than the separation between peaks [see tL = 0.5t in
Fig. 4(d)]. In contrast, even for tL = 0.2t, IL still cor-
rectly images the current pattern in the right region since
due to its semi-infinite nature, ImG does not scale with
δ−1 for tL → 0, and the overall magnitude of ImG and
ReG remain the same (though the overall magnitude of
IL rapidly decreases for tL . 0.2t). This relation between
the success of the imaging method and G(µc) holds for
all networks we have considered: whenever G(µc) is close
to the maximal allowed conductance, and varies weakly
around a given µc, the STM method yields a correct cur-
rent image in the entire network. On the other hand,
if G(µc) is sharply peaked (or reduced from its maximal
value due to dephasing, as discussed below), the agree-
ment breaks down in at least part of the network. Thus,
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FIG. 6. (color online) Spatial current pattern and IL for
(a),(b) γ = 0.002t2 and (c),(d) γ = 0.032t2 with µL = −µR =
0.03t, kBT = 5× 10−6t = 10ω0, and δ = 10−16t.

G(µc) provides an experimentally verifiable criterion for
the success of the imaging technique.

To investigate how the ability of IL,R to image current
patterns is affected by interactions and the resulting de-
phasing, we consider the effects of the electron-phonon
interaction in Eq.(1)[17, 18]. The full solution of the self-
consistent Dyson-equation for ĜK,r for general g, ω0 and
temperature T is currently beyond our computational
abilities, and thus reserved for future work. However,
in the high-temperature approximation kBT ≫ ω0 (with
ω0 → 0) [19], the fermionic self-energy greatly simpli-
fies to ΣK,r = γGK,r, where γ = g2 [1 + 2nB(ω0)], and
the Dyson equation can be numerically solved even for
larger networks [10]. In Fig. 6 we plot the spatial cur-
rent pattern and IL for a (17 × 5) network attached to
a narrow and a wide lead, and two different values of
the dephasing parameter γ. In general, with increasing
γ, the current pattern evolves from that of the ballis-
tic limit to that of a classical resistor network [10]. For
small γ up to γ ∼ 0.002t2 [corresponding to a mean-free
path of l ≈ 13a0, where a0 is the lattice constant], with
conductance G ≈ 0.99

(

2e2/h
)

, IL [Fig. 6(b)] correctly
images Ir,r′ [Fig. 6(a)] which still largely resembles the
current pattern of the quantum (γ = 0) limit. For larger
γ = 0.032t2 with l ≈ 3.3a0 and G ≈ 0.93

(

2e2/h
)

, both
Ir,r′ [Fig. 6(c)] and IL [Fig. 6(d)] become spatially more
diffuse, however, IL(T) still reproduces the main features
of the current pattern even for such a small mean-free
path. This demonstrates that the STM imaging tech-
nique is rather robust against dephasing effects even for
mean-free paths as small as a few lattice spacings. In-
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creasing γ even further results in an overall suppression
of G(µc), and an increasing disagreement between IL and
Ir,r′ , in agreement with the criterion formulated above.
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