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We study the Bose-Einstein condensate phase transitionreé dimensional ultracold bosons with
isotropic Rashba spin-orbit coupling. Investigating theicture of Ginzburg-Landau free energy as a
function of the condensate density, we show, within the Biagov approximation, that the condensate
phase transition is first order with a jump in the condensatssitly. We calculate the transition temperature
and the jump in the condensate density at the transitiorafgelspin-orbit coupling, where the transition
temperature depends linearly on the density of particl@sallly, we discuss the feasibility of producing
the phase transition experimentally.

The recent experimental realization of artificial non-between the condensed and normal phases at this level of
Abelian gauge fields in ultracold atomic gases [1-3] haspproximation is first order. For relatively large spin-iorb
opened the prospect of exploring a wide range of physicsoupling, we estimate the transition temperature, which de
that is difficult to realize or investigate in other systei®@$. pends linearly on the density of the particles, With in-
particular interest is simulated Rashba-Dresselhaus spirease in the spin-orbit coupling, scattering length or par
orbit coupling [4, 5], for which the modified single-pargcl ticle density, it can become feasible to see the transition i
spectrum leads to novel phases and phenomena. A neealistic experimental setups.

table feature of such systems is that the normal phase i NOt e first order transition we find is distinct from the spu-
kinematically forbidden at any nonzero temperature, @nlik o s first order phase transition one finds within BHF in

in usual three dimensional Bose gases where there is @5 Bose gases [20]. The spurious transition is driven

normal state below the Bose-Einstein condensation (BEG)y, orger parameter fluctuations which lead to a density of
transition temperature. On the other hand, interparticle i 5 ticles excited out of the condensate near the transition

teractions stabilize Bose condensates at low temperatures —_ 1/2 \piobic non-analvtic in the condensate frac-
[6, 7]. The issue we investigate in this paper is the phasg A y

transition at a nonzero temperature between the normal ar}(é)(?[i ngé t(-errhn(ﬁei:ift ?hrgirriiirc?glstl)tcle%g\l/?o:ear??r:/:d r\ll;rs]zr:irg(r)]rs_
condensed states. y 9 p

tion. The relevant momentum scale therg/fan,, where
The ground state of ultracold bosons with Rashbay is the interparticle s-wave scattering length. However,
Dresselhaus spin-orbit coupling is predicted, dependmg oRashba spin-orbit coupling introduces a second seale,
the details of the interactions, to have two characteristithe strength of the spin-orbit coupling (see Eq. (1) below);
phases: a plane-wave state, which is a BEC in a single mave see as a consequence that the density of excited parti-
mentum state, or a striped state, which is a BEC of two opeles is analytic im, for x? > an,,.
posite momenta [8-12]. More exotic phases are predicted

at nonzero te'mp_eraturgs_[13] and in harmomc traps [14Tirst order at a higher level of approximation is beyond the
18]. Atoms with isotropic in-plane Rashba spin-orbit cou-SCOpe of this paper. On the one hand, this system is sim-

_pImg have circularly degenera?e smgle_: particle ENErgyM! j1ar to other bosonic systems with continuously degener-
ima; as a consequence non-interacting bosons with su

; . ) ; . ate single-particle minima, such as a weak-crystallizatio
coupling do not Bose condense in three dimensions, owing e [21] and magnon systems [22], in which conden-
to the density of states being two-dimensional at low en- ’

. 'sation transitions are predicted to be first order. On the
%ther hand, the single particle density of states in theglan
vave phase closely resembles that in a two-dimensional
BErezhinskii-Kosterlitz-Thouless (BKT) system. In finite
geometry the condensate fraction is discontinuous at the
We focus here on spatially homogeneous ultracolBKT transition, but in a macroscopic system correlation
bosons in three dimensions with isotropic in-plane Rashbaorrections change the transition from first order to centin
spin-orbit coupling. Assuming a plane-wave condensate atous, as one sees from scaling arguments [23]. Indepen-
low temperatures, we explore the condensate phase tradent of the precise order of the transition, our analysis pro
sition by obtaining the Ginzburg-Landau free energy as aides a good approximation for the thermodynamic func-
function of the condensate density around the transitionjons over a wide range of temperatures, except possibly
within the Bogoliubov approximation including Hartree- in the immediate neighborhood of the transition due to the
Fock energies (henceforth referred to as BHF). Calculatlimitations of the Ginzburg-Landau formalism and mean-
ing how the coefficients of the Ginzburg-Landau free enfield theory. The thermodynamic functions we obtain are
ergy vary with temperature, we conclude that the transitioruseful both theoretically and experimentally in calculgti

The deep issue of whether the present transition remains

interactions allow Bose condensation at nonzero temper
tures. Thus the phase of the system, whether condensate
normal, is determined from energetics.
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properties of the gas, e.g., dynamics [24]. particle dispersion relation within Hartree-Fock is [6].
Hamiltonian. We consider a system of bosons in two o o
hyperfine (pseudospin) states labelledand b, with an £.(p) = (pLEr)"+p; n §gn(,u)7 )
isotropic in-plane Rashba-Dresselhaus spin-orbit cagpli 2m 2
and an isotropic s-wave interaction, described by th&vhere the total number of particles in the normal phase
Hamiltonian n(u), which is a function of the chemical potentjaland
p? + K2 K a the temperaturé’, is self-consistently determined from the
M=) (af b) {7%1 I+ E(%p” +0'ypy)] <bp> number equation
P
g !l n(n) = = S UE @)+ FE@). O
+ 20 Z (ap4ap3 ap,0p, vV - + ’
P1+P2=P3+P4 P
+05, b5, bpabp, + 20,,b], bp,05,) - (1) wheref(z) = 1/(e”/T — 1). For a given total density

As before [6],m is the atomic massy the volume of ™. the chemical potential approach&g:/2 asT" — 0,
the system the spin-orbit coupling strength, taken to and for nonzero temperaturgs, < 3gn/2. The shift in
be positive, andz, and b, are annihilation operators of chemical potential Ay = 1 — 3gn(u)/2 < 0, from its
particles of momentunp in the pseudospin statesand T :_O value can be written in terms of the normal state
b. Theo, ando, are Pauli matrices between the inter- densityn(u) using Eq. (3). FofAu| < €., andT'/e, S
nal states, and is the two-by-two identity matrix. We 1. the main contribution comes from_ ~ « andp. ~ 0
assume an isotropic (constant) mean-field couplingx- !N > f(&-(p)), and we obtain
tending the present theory to include the effects of renor- mirT
malization of the interaction [11, 25, 26] is left as a future n(p) ~ — 5
problem. Diagonalization of the single particle terms ia th g
Hamiltonian gives two single-particle dispersion brars;he \(/thiCh is eTsentiaIIy( the mea(m ;‘i6|fd[ reEUH for a I;NO-d
_ 2, .2 _ 2 2 imensional system (see Eq. (13) of [23]). Since at fixe
6j?(P).z {(pL £ K)*+p2}/2m, wherep, = VP T Py w, n(p) increases witl', |Apu| also increases witlf'.
with circularly degenerate ground states al¢pg, p.) = Ginzburg-Landau free energy. We now determine,
(r,0). A previous study [7] shows that the plane-wavewithin BHF, the Ginzburg-Landau free energy as a func-
state, in which the condensate is made of particles with gon of the condensate density,, around the condensate
single momentum, is the preferred ground state within thg,;sition. Since the operatar. —bl.) /+/2 creates a parti-

Bogoliubov approximation. We start from the plane-wavege i the plane-wave condensate, it is easier, as befare [6]
ground state with momentum = (x,0,0), and consider 4 \vork in the following(—, +) basis:
, :

how the transition to the normal state takes place at finite

In (=Ap/T), (4)

temperatures. Yop\_ 1 (1 -1\ (ap (5)
Normal state. We consider the free energies of the Yip) 2 \1 1 bp )

normal and condensed states as functions of temperature,

T, and chemical potentialy; at the phase transition, the The state created byiyn is macroscopically occupied.

chemical potentials and pressures of the normal and con- The effective Hamiltonian in thé—, +) basis within

densate phases must be equal. In the normal state the queBHF is

1 gn? gno 1
vV (H = puN) = —pno + TO —g(n2 +ni+n_ny)+ TOV (wiypqﬁiﬂnfp + ¢7,p7/)—,2n7p)
P#£K
1 ®-r)® 4 g(2n0 + 2n_ +ny) —iLp "
Ty W vl [ T i ( p) (6)
|4 g (5 V) i£p, E® g g(ng + ne + 2ny) ) \ P

wheren, is the density of condensate particles,andn.  F(u, T, ng), with respect toy is
are the densities of particles (r-) and(+) statesthatare gr 1 /9(H — uN)
(B0 o o

not in the condensate. The derivative of the free energyy, =7 Fre
g -
+ W Z <w*7p¢7,2nfp + 7/’—,p¢—,2n7p> . (7)

P#K
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As ny — 0, one recovers the free energy of the normal SinceAyu < 0, we need only considet(z) and3(z)
phasen_,n, — n(u)/2, and the last term approaches with negative arguments; by explicit calculation, one sees
zero in this limit. In the following, we expand the right thata(x) and/3(z) are both positive there and monotoni-
side of (7) as a function of, to obtain the difference of the cally increasing functions of, with the asymptotic forms
free energiesF in the condensed and normal phases. Thasz — 0,

expansion is facilitated by using the single particle nxatri 19 0.19 0.16

Green’s functions with anomalous componefésq, t; — a(r) >~ — ~—— Bz —  (14)
ty) = —i(T (Vq(t1) ¥ (t2))), where the four-component 32mx x z
spinor¥,(t) is and approaching 0 as — —oo. The analytic form forx
U (t) = is derived from th&G; + G35 termin Eq. (9); the contri-

bution of theGGy, terms is small, and numerically changes
(qﬁ,’,ﬁq(t), AR (3 WY/ SN () zﬂqu(t)) . the coefficient from 0.19 to 0.20. Figure 1 pletér) and
®) B(x), calculated numerically.

In terms ofG, Eq. (7) becomes

OF d*q L AN 204
e = “HHgno— gl /— 2G11(p; 2 S '.
Ono pr g ; (27T)3 ( 11(p ) 10%}: e 1.0 I‘-
1 \\\ \
+G33(p’ zV) + 5 (G21 (p7 Z,,) + GlQ(pv Z,,))) ) (9) 107 \\\
where ther are the bosonic Matsubara frequencies. The 10°F
matrix Green’s function within BHF is [6], 1000}

z—A —gng iq, 0

—gng —z—A 0 iq, 10¢

G(q,2) = —i7q, 0 z—B 0 ’ : : : ‘ : -x
m 1 -5 —4
0 it 0 —2-D 10 10 0001 001 0.1 1
(10) FIG. 1: Functionsa(x) (solid line) andg(x) (dashed line),
where Eqg. (13), for0 > = > —1. The inset shows the behavior of

L ; N
A(q) — q2/2m o+ g(2n0 Lop 4 n+) the functions in the lower right corner, where: 2 1.

B(q) = (26 +q)?/2m — p+ g(ng +n_ + 2n.)

D(q) = B(—q). 11) Integrating (12), we obtain the Ginzburg-Landau free en-

Since the condensate transition is characterized by th@9y Up to third order im;:
infrared structure of the Green’s functions, in expanding g g2
in ny, we consider only thes = 0 component in (9). In F(no) = Fu — Apng + X§n§ + anﬁ, (15)
evaluating Green’s functions in (9), we approximaterthe
andn. in A, B, andD through (11) byn(u) /2, theirvalue ~ Where 7, = F(no = 0) is the free energy in the nor-
to leading order imy; including then, dependence ai,.  mal phase. The coefficients af, andnj are both pos-
by solving the number equations self-consistently remain#ive, whereas for given: > 0, the coefficientX of n
a task for the future. Fat # 0, the right side of (9), can is negative at lowl’, and decreases continuously with de-

be expanded for smajing < k?/m as creasing temperature [27]. This change in the coefficient
OF 3 of ng drives a first order phase transition, since at suf-
I = K + §gn(,u) + Xgno + Y (gno)*> + ..., ficiently small 7', the two conditionsF(n,) = JF, and
No

0F (ng)/Ong = 0 become simultaneously satisfied; this

(12) occurs whenX? = —16Y Ap/3. At this temperature the
where system undergoes a transition to the condensed phase. Fig-
. am?*gT [ Ap ure 2 schematically shows how this transition takes place.
X(pT)=1- o (:) ’ The combinationX?/(—Y Au) = T monotonically de-
4m2gT Ay creases withl’, as long asX < 0. At the transition,n(_)
Y(p,T) = — B ( - ) , (13)  jumps from zero t93.X /4Y ¢g| > 0 on the condensate side.

Transition temperature. Now we estimate the transition
€x = K%/2m, anda(z) andSB(x) are dimensionless func- temperature assuming that the spin-orbit coupling strengt
tions. Note that if one replacesby 47a/m, the prefac- is sufficiently large that, > |Aul. We will see that
tor 4m?g*T becomes3272a/)\?, where) is the thermal this condition is obeyed by typical experimental parame-
wavelength. ters. Then, using the asymptotic forms (14) the condition



Experimental feasibility. Finally we mention accessing
the transition experimentally. For orientation we take-typ
ical current experimental values from Ref. [1], which re-
alized a gas of’Rb with a mixture of Rashba and Dres-
selhaus spin-orbit coupling, with coupling strength~
V27 /800nm and density of orden ~ 10'2/cm?®. Ap-
proximating the coupling by 47a/m, so that2mrg ~
0.69, we obtainT, ~ 2nK with a jump in the conden-
sate fraction at the transitiom,/n ~ 0.1. In addition,

16 T./e. ~ 0.019 andAp /e, ~ 4.3 x 10~* putting the sys-

r> £} —> tem in a regime where the approximations leading to (17)

are valid. Future experiments could, depending on their
specific configurations, be able to increase the transition
temperature and the jump in the condensate density via in-
free energy, measured with respect to the free energy ofdhe n crea_smg—;, n, Ora. Since a plane—wavg condensat_e'breaks
mal phase. The top line is f&f > T. wherel' < 16/3; the rotational symmetry arounq the z-aX|s,.the transition can
middle line is atT%, wherel' = 16/3; and the bottom line is for D€ accompanied by formation of domains of condensates
T < T. wherel' > 16/3. with different plane-wave momenta, which is experimen-
tally observable. Including effects of trapping poterstial
and details of specific configurations of realizing artificia
spin-orbit coupling is work in progress.

FIG. 2: The first order phase transition from the normal to-con
densed phase At= 16/3. . The lines show the Ginzburg-Landau

for the transition]' = 16/3, becomes ) i
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