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We present results of a numerical analysis of Julius Hartmann’s historical experiments on flows of
mercury in pipes and ducts under the influence of magnetic fields. The computed critical parameters
for the laminar-turbulent transition as well as the friction coefficients are in excellent agreement
with Hartmann’s data. The simulations provide a first detailed view of the flow structures that are
experimentally inaccessible. Novel flow regimes with localized turbulent spots near the side walls
parallel to the magnetic field and otherwise laminar flow are discovered. We finally suggest how
these predictions can be tested in a transparent fluid using optical flow measurement.
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75 years ago, Julius Hartmann published two articles
[1, 2] on flows of mercury in pipes and ducts under the in-
fluence of a uniform transverse magnetic field. In [1], he
derived an exact solution for the laminar magnetohydro-
dynamic (MHD) channel flow that would later be called
Hartmann profile and would, with its characteristic elec-
tromagnetic boundary layer (the Hartmann layer), be-
come a cornerstone of MHD. Paper [2] described a series
of ingenious experiments with flows in pipes and ducts.
Today the publication of [1, 2] is widely considered as
the advent of liquid metal MHD. Since then, MHD has
found a variety of applications ranging from understand-
ing the Earth’s magnetic field [3] to electromagnetic flow
measurement [4–6] and flow control in materials process-
ing [7]. Other uses, such as liquid metal cooling of fusion
reactors [8], are forthcoming.

Given that the Hartmann experiment plays a similar
role for laminar-turbulent transition in MHD as the 1883
Reynolds experiment [9] for transition in hydrodynamics
(HD), it is rather astonishing that it has not been fully ex-
plored using modern numerical analysis. Computations
are especially important for MHD, where experiments are
conducted with opaque liquid metals and the spatial flow
structure cannot be directly observed. The difficulty is
illustrated by the inconsistency of experimental data on
the transition in tubes, i.e. in pipes and ducts. The only
reliable transition criterion available in experiments is the
qualitative change in the dependence of pressure drop on
flow rate. At strong magnetic fields, the transition is
reported at the Reynolds number R based on the Hart-
mann layer thickness around Rc ≈ 400 [10]. The critical
values in [2] are considerably smaller, Rc ≈ 200, which
has led to concerns about the current understanding of
the flow as well as possible imperfections in Hartmann’s
setup.

This Letter presents our analysis of the transitional
states in the Hartmann experiment and, generally, in

MHD tubes at moderate Reynolds numbers. Numerical
simulations conducted in long domains allow us to re-
veal the spatial flow structure and discover new regimes.
The results explain the apparent inconsistency of the ex-
perimental measurements of Rc. We also determine the
minimum requirements for accurate numerical modeling
of transitional flows.

In MHD tube flows with insulating walls and suffi-
ciently strong transverse magnetic fields B, the Lorentz
force associated with induced electric currents gives rise
to velocity distributions with flat cores and characteristic
boundary layers: Hartmann layers near the walls perpen-
dicular to B and Shercliff (duct) or Roberts (pipe) layers
near the walls parallel to B [1, 11]. The currents cause
Joule dissipation and lead to increased drag when the
flow is laminar. In turbulent flows, magnetic damping of
fluctuations may reduce the drag.

The MHD tube flows belong to the same class of wall-
bounded parallel flows as the HD pipe, duct, channel,
Couette, and boundary layer flows, in which the tran-
sition is subcritical and caused by essentially nonlinear
mechanisms [12]. One should, therefore, speak of a range
of flow parameters in which the transition or laminariza-
tion occur (e.g., recent experiments [13] in pipe), rather
than about a sharp threshold. Previous numerical stud-
ies, such as [14, 15], examined the transition following
the evolution of finite-amplitude perturbations imposed
on a laminar flow. Here, we adopt the same approach as
in the Hartmann experiments and perform most of the
simulations as laminarization tests at constant flow rate,
in which B is increased until the initially turbulent flow
becomes laminar.

The non-dimensional governing equations are the
Navier-Stokes and induction equation in quasistatic ap-
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FIG. 1. Friction factor Cf as obtained in our simulations and
compared to Hartmann’s data recalculated from [2].

proximation [11]:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+

Ha
2

Re
(j × eB) ,

∇ · u = 0, j = −∇φ+ (u× eB) , ∇
2φ = ∇ · (u× eB) ,

where u, p, j, φ are velocity, pressure, electric current
density and potential, and eB = B/B. The nondi-
mensional parameters are the Reynolds and Hartmann

numbers Re ≡ LU/ν and Ha ≡ BL (σ/ρν)
1/2

, where
σ, ρ, and ν are the fluid electric conductivity, density,
and kinematic viscosity, U is the mean velocity, and L
is the duct half-width or pipe radius. The conditions at
electrically insulating walls are u = 0 and ∂φ/∂n = 0.
The duct has square cross-section with the magnetic field
parallel to one pair of walls.
Computations are performed in domains with peri-

odic inlet/exit boundaries using the conservative, second-
order finite-difference scheme described in [16, 17]. The
grid is clustered near the walls. For the pipe, the number
of grid points Nx(per unit length)×Nr×Nθ is 20× 64×
256. The grid for the duct has Nx(per unit length) ×
Ny ×Nz = 20 × 128 × 128 points. A comprehensive se-
ries of simulations with long domains (up to 64π for duct
and 160 for pipe) and run times has been performed.
This has been achieved by massive parallelization, with
about 300000 CPU-hours consumed in the course of com-
putations (Juropa supercomputer at Forschungszentrum
Jülich). Further details of the numerical model and grid
sensitivity studies are described in the electronic supple-
ment.
We start with the computations conducted to repro-

duce two sets of data reported in [2]: the pipe case K12
at Re = 3500 and the duct case K27 at Re = 3000. The
aspect ratio of the duct sides in K27 is 1.12, which is clos-
est to our geometry among the experiments [2] conducted
at Re sufficiently high to generate turbulence.
Fig. 1 shows the friction factor Cf ≡ 2∂xPL/ρU2 (∂xP

is the mean pressure gradient) as a function of Ha. The
numerical data are obtained in domains of length of 80
(pipe) and 16π (duct) by averaging over not less than 500
time units. The agreement with the experiments is quite
good, with the largest relative discrepancy in Cf being
within 3%.

FIG. 2. TKE visualized in the flow domains for: (a) pipe at
Lx = 80R, Ha = 22; (b) duct at Lx = 32π, Ha = 22; (c) duct
at Lx = 32π, Ha = 25. Iso-surfaces corresponding to 2% of
the maximum are shown. Insets present TKE distributions
in selected cross-sections. The isolevels are the same in all
insets.

The shape of the curves Cf (Ha) with the characteris-
tic ‘dips’ can be explained by transformation in response
to the magnetic field. Both flows are fully turbulent at
Ha ≤ 12. They become entirely laminar at Ha ≥ 16
(pipe) or Ha ≥ 15 (duct). Between the two limits, the
flows have the transitional form discussed below. It is
known from [18–21] and confirmed by our computations
that the suppression of turbulence and reduction of mo-
mentum transport by the magnetic field result, in the
considered range of Re and Ha, in a decrease of Cf . After
the flow becomes laminar, increase of Ha means thinner
Hartmann and sidewall layers and, thus, stronger gradi-
ent of mean velocity near the walls and higher Cf .

One possible explanation of the small discrepancy be-
tween experimental and computational data is the prox-
imity of the starting point for measuring pressure drop
to the edge of the magnet (∼ 10 diameters) [2]. This
means that the flow evolution after the entrance into the
magnet has a non-negligible contribution to the measured
pressure drop. Another possible reason for discrepancy
in the transitional region will become clear in the fol-
lowing discussion. The intermittent character of the flow
requires very large averaging times not easily achievable
in computations.

The rest of this Letter explores the transitional states.
We use results of extensive simulations of pipe and duct
flows at Re = 5000. In comparison with the cases in
Fig. 1, the principal features of the states remain un-
changed, but the range of Ha, where they are detected,
is increased. Specifically, in our runs with the longest do-
mains, fully turbulent flows are always found at Ha ≤ 18
for pipe and Ha ≤ 21 for duct. Complete laminarization
is observed at Ha ≥ 23 and Ha ≥ 26, respectively. The
typical flow states found between these limits are pre-
sented in Fig. 2 using instantaneous low-level isosurfaces
of the turbulent kinetic energy (TKE) of transverse ve-
locity q = u2

y + u2
z (duct) or q = u2

r + u2

θ (pipe). We see
the main feature of the transitional regimes – localized
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FIG. 3. Two regimes with different puff-patterns in duct at
Lx = 64π, Ha = 25. Integrated TKE for east (EE, lower
curves) and west (EW , upper curves) sides is shown.

FIG. 4. Evolution of turbulent spots in ducts shown as spatio-
temporal distribution of integrated TKE E(t, x): (a) EW at
Lx = 64π, Ha = 25 (see Fig. 3a); (b) EE at Lx = 32π,
Ha = 25 (see Fig. 2c); (c) EE at Lx = 32π, Ha = 22 (see
Fig. 2b); (d) EE in another run at Lx = 32π, Ha = 22. Labels
M and S mark the events of puff merging and splitting.

turbulent spots with laminar flow between them.

Localized turbulent spots are well known from HD
wall-bounded shear flows [22–27] and can be considered
in the broader context of patterned turbulence. The best
known example is pipe flow, where the spots are known
since [9]. Two types of spots have been identified [22–26]:
turbulent puffs with nearly constant length and speed ex-
isting in low-Re flows with strong perturbations and tur-
bulent slugs at high Re characterized by aggressive length
growth leading to a completely turbulent state. A dis-
cussion of their fascinating features, including vorticity
dynamics, their nature as a chaotic saddle and the ran-
dom character and sensitivity to initial conditions, can
be found in [22–26].

A major new feature of the turbulent spots in our MHD
case is their localization near the sidewalls. As seen in
Fig. 2, the flow in the core and the Hartmann layers re-
mains essentially laminar. The phenomenon is observed
in all the transitional regimes found in our computations
for both the pipe and the duct. We note that, while the
turbulent spot pattern is a novel flow regime, turbulent
sidewall layers in otherwise laminar flow have been found
in ducts at high Re and Ha [17, 28].

We analyze the behavior of the turbulent spots using
TKE q. In addition to the 3D distributions in Fig. 2, we
use TKE integrated over the parts of the cross-section,
where the spots are located E(x, t) =

∫
Ω
qdΩ. For the

duct, Ω is a rectangle of full height and width 1/2 ad-
jacent to a sidewall. For the pipe, Ω is a ring sector
1/2 < r < 1 of angle π/2 centered at a sidewall. The re-

sults are shown as instantaneous x-distributions in Fig. 3
and on the x−t-plane in Fig. 4. The data for two opposite
sidewalls are indicated as ‘east’ and ‘west’.
We have identified two types of flow regimes with tur-

bulent spots. One type, illustrated in Figs. 2a,c, 3 and
4a,b, has been observed at higher Ha (Ha ≥ 20 for pipe
and Ha ≥ 23 for duct), i.e. closer to laminarization. Its
distinctive feature is that, apart from the rare dynamic
events to be discussed shortly, each spot maintains its
identity, approximately constant length ∼ 25 − 30, and
speed ∼ 0.9 during the entire simulation, up to 2000 time
units. The TKE distribution along a spot typically shows
a maximum in the middle and decreases gradually to-
wards the ends (see Fig. 3). The TKE of an isolated spot
depends only on Ha decreasing from ∼ 0.07 at lower Ha
to ∼ 0.05 at high Ha.
The length and energy of individual spots have been

repeatedly reproduced in all our pipe and duct simula-
tions. At the same time, the number of spots and the
distance between them demonstrate non-uniqueness and
strong sensitivity to initial conditions. For example, two
regimes with spots localized at either one or both side-
walls (as in Fig. 2c) are obtained in two runs identical
in all respects but the initial conditions, which are the
turbulent states at Ha = 0 separated by 20 time units.
Similarly, the flows in Fig. 3 are obtained in the same
system but with different initial conditions: turbulent
flow at Ha = 20 (Fig. 3a) or a two-spot flow at Ha = 25
computed in a shorter domain (Fig. 3b).
There is a clear analogy between our high-Ha turbulent

spots and turbulent puffs in the HD pipe flow [22–26],
except for some difference in the typical length (about 40
in the HD pipe). The term ‘puff’ is used in the following.
Rich dynamics of puffs has been found in our simula-

tions. Some features are related to the sidewall localiza-
tion and are completely unique. In particular, the puffs
developing at the opposite walls tend to form staggered
patterns (see Fig. 3). In the pipe flow, we have also ob-
served events of ‘locking’, when the two puffs forming on
the opposite sides travel together apparently locked by
mutual perturbation (see Fig. 2a).
Other features have counterparts in HD systems. For

example, we observed gradual merging of two puffs lo-
cated at the same wall near each other (point M in
Fig. 4b). Gradual stretching of a puff followed by its
splitting into two puffs was also detected (points S in
Figs. 4a,b). The splitting was often followed by a long
phase of ‘chaining’, in which two new puffs traveled to-
gether separated by a short distance (Fig. 3b, west) or
connected in a bi-maxima structure (Fig. 3b, east). In
several cases, a sequence of stretching, splitting, chain-
ing, and then merging was found.
The second kind of turbulent spots, which we call ‘ex-

tended turbulent zones’, has been observed at lower Ha
(Ha = 22 for the duct and Ha = 19, 20 for the pipe)
(Figs. 2b, 4c-d). These spots appeared only in some sim-
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ulations, usually when a puff flow at a higher Ha was
taken as an initial condition. In the other simulations, a
rapid transition to a flow with two fully turbulent side-
wall layers and laminar core occurred. Unlike puffs, the
extended zones do not have typical length or energy. Tur-
bulence is present over the entire length of the flow do-
main, either on both sides in the form of staggered struc-
ture (Figs. 2b) or on one side. The total TKE of the ex-
tended zone states is only slightly (5-10%) smaller than
the TKE of the states with fully turbulent sidewall layers
observed at the same Ha.

Some analogy can be traced between our extended
zones and the intermittency structures obtained for HD
pipe in computations with growing Re [24]. We have
emulated [24] conducting duct simulations starting with
puff regimes at Ha = 25 and decreasing Ha to 22. Flows
at Lx = 32π with a puff on one or two sides have been
used as initial conditions. In the first case, long-time
(hundreds of time units) evolution results in a quasi-
stationary state with two-sided staggered extended zones
(Figs. 2b, 4c). In the second case, the turbulence zone
on one side spreads until it fills the entire duct length
(Fig. 4d), while the other side and the core remain lami-
nar.

The results reported so far are obtained using long
computational domains: at least 80 for the pipe and
32π for the duct. We have also conducted simulations in
shorter domains and found a strong effect. The range of
Ha, in which the states with isolated turbulent spots are
found, reduces with decreasing Lx. No puffs appear in
domains shorter than 20. Instead, the transitional states
have either one or two completely turbulent sidewall lay-
ers. Single puffs are found on one or two sides of pipes
with Lx = 40 and ducts with Lx = 16π. We conclude
that an accurate simulation of the transitional regimes
at moderate Re and Ha requires a domain several times
longer than a typical puff (at least ∼ 80 half-widths or
radii). The earlier results obtained in shorter domains
[18, 19, 28, 29] have to be considered critically in this
respect. A similar conclusion is suggested by the results
of [30].

Our work has two major conclusions. First, the clas-
sical experiments [2], provide high quality results that
stand the test by modern numerical analysis. Second, for
the duct and pipe MHD flows, there exists a substantial
area on the Re-Ha plane, where they are neither laminar
nor turbulent, but have laminar cores and Hartmann lay-
ers as well as sidewall layers consisting of laminar zones
and turbulent puff-like or extended turbulent spots. The
behavior of these states does not differ significantly be-
tween the pipe and the duct. Our results also help to
resolve the apparent inconsistency of the experimental
data concerning the duct flow transition. Experiments
at high Ha [10] show transition at R = Re/Ha ∼ 400,
while the experiments at moderate Ha indicate transition
at R ∼ 200 [2, 31]. Our results together with the recent

high-Ha computations [17, 28] show that turbulence ap-
pears at R ∼ 200, albeit only near the sidewalls. This
is not registered in the high-Ha experiments because the
total friction is dominated by the friction in the laminar
Hartmann layers. Accordingly, the change in friction be-
havior caused by transition in isolated Hartmann layers
at R ∼ 400 [14] is found.

Our study leaves some unanswered questions about the
turbulent spots. It is unclear whether their existence is
limited to moderate Re or they can appear at higher Re
and Ha. Our simulations at Re = 105, Ha ≤ 400 [28]
did not show them, but the domain length in [28] was
just 4π. Other questions concern the nature of turbulent
puffs, in particular, their lifetime statistics, dynamics of
streamwise streaks and hairpin vortices, and the nature
of the edge of chaos state. It would be interesting to
extend the reaction-diffusion model for puffs in HD pipe
flow [32] to the locking between puffs in MHD pipe flow.

There is another potentially interesting aspect that
may make high-Ha flows an attractive system for study-
ing dynamics of patterned turbulence. As the ratio of
sidelayer width to its vertical size decreases with Ha,
structures may appear that do not occupy the full verti-
cal range in analogy with the turbulent bands in Couette
flow [30]. Therefore, MHD pipe or duct flow can exhibit
a continuous change from spots to bands controlled by
increasing Ha.

Let us finally propose an experiment in the spirit of [2]
that would significantly improve understanding of MHD
flows. Up to now, all experiments have been carried
out with liquid metals [2, 10, 11, 31], which do not per-
mit flow visualization. Experiments using a transparent
liquid such as saltwater and applying stereoscopic PIV
could reveal the structure of the flow. Since the electric
conductivity of electrolytes is four orders of magnitude
lower than of liquid metals, higher magnetic fields would
be necessary to achieve the same Ha. An experiment in
a pipe or duct of width 0.1 m and length ∼ 10 m requires
a long uniform magnetic field ∼ 1 T. Such a magnet sys-
tem could be either created by superconducting coils or
by rare-earth permanent magnets in the form of Halbach
cylinders [33]. This makes electrolyte Hartmann experi-
ments feasible in the future.
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