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We argue that Hořava-Lifshitz (HL) gravity provides the minimal holographic dual for Lifshitz-
type field theories with anisotropic scaling and dynamical exponent z. First we show that Lifshitz
spacetimes are vacuum solutions of HL gravity, without need for additional matter. Then we perform
holographic renormalization of HL gravity, and show how it reproduces the full structure of the z = 2
anisotropic Weyl anomaly in dual field theories in 2 + 1 dimensions, while its minimal relativistic
gravity counterpart yields only one of two independent central charges in the anomaly.

The concepts of scaling and the renormalization group
have played a central role in organizing our understand-
ing of quantum field theory (QFT) and statistical systems
for half a century. Here we will focus on systems in D+1
spacetime dimensions which exhibit scaling anisotropic
between time and space,

t → bzt, xi → bxi, i = 1, . . .D, (1)

with the degree of anisotropy measured by the dynami-
cal exponent z. Systems with such Lifshitz scaling appear
frequently in quantum and statistical field theory of con-
densed matter systems [1], especially in the context of
Lifshitz multicritical points, and in nonequilibrium sta-
tistical mechanics. More recently, in a seemingly unre-
lated development, anisotropic Lifshitz-type scaling (1)
has played a central role in the new approach to quan-
tum gravity initiated in [2, 3] and commonly referred to
as Hořava-Lifshitz (HL) gravity.
Since AdS/CFT correspondence taught us that many

relativistic QFTs have relativistic gravity duals, it seems
natural to expect that the two disparate applications of
Lifshitz scaling – nonrelativistic QFT on one hand and
HL gravity on the other – should similarly be related by
a holographic duality. The background geometry that
captures the spacetime symmetries of QFTs with Lif-
shitz scaling (1) is easy to find; it is given by the Lifshitz
spacetime [4] in D + 2 dimensions,

ds2 = −
(r
ℓ

)2z
dt2 +

(r
ℓ

)2
dxidxi +

(
ℓ

r

)2

dr2. (2)

(From now on, we will set its radius of curvature ℓ = 1 for
convenience.) The holographic gravity duals of Lifshitz-
type QFTs should therefore have (2) as their solution.
Until now, the overwhelming share of work on Lifshitz

holography (starting with [4]) does not use HL gravity
– it uses relativistic bulk gravity coupled to matter in-
stead. In the relativistic case, the coupling to matter
is necessary, as the Lifshitz spacetime with z 6= 1 does

not solve the Einstein equations in the vacuum. Here we
stress that another natural option is available: Instead
of adding ad hoc matter to Einstein gravity so that (2)
becomes a solution, one can modify gravity itself.
Perhaps the most popular relativistic model for Lif-

shitz holography, proposed in [5], consists of Einstein
gravity (described by the bulk metric Gµν , in coordi-
nates yµ = (t, xi, r), with µ = 0, . . .D + 1), coupled to a
massive vector Aµ:

Srel =
1

16πGN

∫
dt dDx dr

√
−G

{
R− 2Λ− 1

4
FµνF

µν

− 1

2
m2AµA

µ

}
+ surface terms. (3)

The Lifshitz geometry (2) is a solution for an appropriate
condensate of A0 and an appropriate choice of Λ and m.
In this paper, we will follow the alternate path, and

show that the Lifshitz spacetime is a vacuum solution
of minimal HL gravity, with no additional matter. The
preferred foliation of the Lifshitz spacetime, required for
its embedding into HL gravity, is simply the foliation by
leaves of constant t. We will often split the bulk co-
ordinates yµ into time t plus D + 1 spatial coordinates
ya = (xi, r), a = 1, . . .D, and write the spacetime metric
Gµν in the Hamiltonian decomposition,

Gµνdy
µdyν = −N2dt2 + gab(dy

a +Nadt)(dyb +N bdt).

Thus, gab is the metric on the spatial bulk leaves of fixed
t, Na is the shift vector and N the lapse function. Since
the Lifshitz geometry (2) requires N with a spatial de-
pendence, we work in the nonprojectable version of HL
gravity, with N a full-fledged spacetime-dependent field.
Gauge symmetries are the foliation-preserving diffeomor-
phisms of spacetime.
HL gravity may enjoy better short-distance properties

than Einstein gravity (if it is dominated at high ener-
gies by its own z > 1 scaling), but here we will follow the
“bottom-up” strategy common in relativistic holography,
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and work only in the low-energy bulk gravity approxima-
tion. This is equivalent to the large N limit in the dual
field theory. In this low-energy limit, HL gravity is dom-
inated by the most relevant terms compatible with the
gauge symmetries, and its effective action is

S =
1

2κ2

∫
dt dDx dr

√
gN

{
KabK

ab − λK2

+ β(R − 2Λ) +
α2

2

∇aN∇aN

N2

}
. (4)

(Here Kab =
1

2N (∂tgab −∇aNb − ∇bNa) is the extrinsic
curvature of the foliation, R the scalar curvature of gab,
and K = gabKab.) The novelty compared to pure Ein-
stein gravity is in the three couplings β, λ and α, which
in Einstein gravity are fixed to λ = β = 1 and α = 0.
Note that turning on the α coupling is important for the
consistency of nonprojectable HL gravity [6, 7]: Taking
the naive α → 0 limit in (4) would lead to a non-closure
of the constraint algebra.
When Λ = 0, the flat spacetime R

D+2 is a solution
of (4). The propagating graviton modes consist of the
transverse-traceless tensor polarizations with dispersion
relation ω2 = βk2 (here k ≡

√
kaka is the magnitude

of the spatial momentum), plus an extra scalar graviton
polarization, with dispersion

ω2 =
β(1 − λ)

[1− (D + 1)λ]

[
1 +D

(
2β

α2
− 1

)]
k2. (5)

The requirement of stability and perturbative unitarity
around flat spacetime constrains the couplings to be in
the range β > 0,

α2 ≤ 2βD

D − 1
, (6)

and

λ ≥ 1 or λ ≤ 1/(D + 1). (7)

Turning on the cosmological constant Λ < 0, we find
that the Lifshitz geometry (2) is a vacuum solution of HL
gravity with low-energy effective action (4), if

Λ = − (D + z − 1)(D + z)

2
(8)

and

α2 =
2β(z − 1)

z
. (9)

This simple interpretation of Lifshitz spacetimes as vac-
uum solutions of HL gravity suggests that the latter is
the natural minimal holographic model of holographic
duality for Lifshitz-type field theories.
Further evidence for the universality of this minimal

model of Lifshitz holography comes from the analysis of

anisotropic Weyl anomalies in holographic renormaliza-
tion, initiated in [8] (and also later in [9]). Just like their
relativistic counterparts, anisotropicWeyl anomalies con-
tain a lot of universal information about the system, and
serve as useful probes of the duality. Consider again some
Lifshitz-type QFT on R

D+1 with coordinates (t, xi) and
a general background metric

ds2 = −N̂2dt2 + ĝij(dx
i + N̂ idt)(dxj + N̂ jdt).

It is useful to think of this theory as residing at the space-
time boundary r → ∞ of the D + 2 dimensional asymp-
totically Lifshitz spacetime, with ĝij , N̂i and N̂ being
the components of the appropriately defined (anisotropic
conformal class of the) boundary metric [8]. Generally,
we will put hats on quantities defined at the boundary,
to distinguish them from their bulk counterparts. Define
anisotropic Weyl transformations, generated by a space-
time dependent σ(t, xi):

δĝij = 2σĝij , δN̂i = 2σN̂i, δN̂ = zσN̂. (10)

These represent a local generalization of the rigid scaling
transformations (1). A QFT which is classically invariant
under (10) can develop an anisotropic Weyl anomaly at
the quantum level, with the effective action transforming
as (see Appendix C of [8] for details):

δSeff [ĝij , N̂j , N̂ ] =

∫
dt dDx

√
ĝN̂ σ(t, xi)A(t, xi).

The independent terms that can appear in A(t, xi) are
local functionals of the metric, invariant under foliation
preserving diffeomorphisms. They can be classified by
solving a cohomological problem [8] designed to auto-
matically incorporate the Wess-Zumino consistency con-
ditions on the anomaly. However, the multiplicative coef-
ficients with which these terms contribute to the anomaly
(and which we will refer to as “central charges”) must be
calculated for a given theory on a case-by-case basis. Per-
haps the simplest nontrivial case is D = 2 and z = 2. In
this case, the anomaly is [8]

A = cK

(
K̂ijK̂

ij − 1

2
K̂2

)
+cV

(
R̂− ∇̂iN̂∇̂iN̂

N̂2
+

∆̂N̂

N̂

)2

,

(11)
with two independent central charges, cK and cV . (Here
K̂ij , ∇̂i and R̂ are the extrinsic curvature, connection
and the scalar curvature constructed from ĝij). As noted
in [8], A in (11) takes the form of the Lagrangian for
z = 2 conformal HL gravity [2, 3] in 2 + 1 dimensions.
Moreover, while the first term in (11) satisfies the so-
called “detailed balance condition,” (i.e., it is related to
the square of the variation of another local functional W ,
see [2, 3]), the other does not.
For QFTs with holographic gravity duals, we can cal-

culate the anomaly by performing holographic renormal-
ization of the bulk theory [10–12] (see [13–15] for re-
views). The relativistic Weyl anomaly was calculated



3

this way in [10]. Holographic renormalization for the
relativistic bulk theory (3) in asymptotically Lifshitz
spacetimes was developed and applied to the anisotropic
Weyl anomalies in [8], following the earlier work of [16–
19]. This procedure relies substantially on the notion
of anisotropic conformal infinity developed in [20]. In
the low-energy gravity approximation, Seff [ĝij , N̂i, N̂ ] is
calculated by evaluating the on-shell gravity action with
the appropriate fall-off conditions on the metric field as
r → ∞. This on-shell action is divergent due to inifinite
volume, and needs to be renormalized. We regulate it by
cutting r off at rǫ = 1/ǫ, and expand the on-shell action
asymptotically to reveal the structure of its divergences.
For the special case of D = z, this expansion gives [8]
(modulo terms that vanish as ǫ → 0):

∫
dt dDx

√
ĝN̂

{
D−1∑

n=0

L(2n)

ǫ2(D−n)
− L̃(2D) log ǫ+ L(2D)

}
.

(The log ǫ term is present only for special values of D and
z [8], including the case D = z = 2 of interest here.) The
divergent terms are then cancelled by local counterterms,
and Seff =

∫
dt dDx

√
ĝN̂L(2D).

To calculate these divergent terms, we use the Hamil-
tonian form of holographic renormalization, as developed
for relativistic AdS/CFT in [21, 22] and extended to the
asymptotically Lifshitz case in [8] following [17]. In this
formulation, the on-shell bulk action is determined as a
functional of the boundary metric because it satisfies the
Hamilton-Jacobi (HJ) equation for the radial evolution
along r. The operator of radial evolution δD is given by
the generator of anisotropic dilatations on the boundary,
and the HJ equation yields a recursive relation between
the counterterms L(m) of adjacent scaling dimensions m.
One of these recursive relations implies [8]

δDL(2D) = −2DL(2D) + L̃(2D). (12)

Interpreted from the boundary point of view, this means
that when L̃(2D) 6= 0, Seff scales anomalously under the
z = D anisotropic Weyl transformations, and L̃(2D) is
the anisotropic Weyl anomaly.
For the special case of the relativistic model (3) with

D = z = 2, the divergent terms were calculated in [8],
where we obtained for the anisotropic Weyl anomaly

A ≡ L̃(4) =
1

16πGN

(
K̂ijK̂

ij − 1

2
K̂2

)
. (13)

Thus, the anomaly in this relativistic model turns out to
have cV = 0, or in other words, satisfies the detailed bal-
ance condition. Why is it so? The conclusive answer was
found in [8]: The relation implying that the anomaly in
the relativistic model (3) should satisfy detailed balance
follows from the holographic recursion relation between
the counterterms L(2) and L̃(4), with L(2) effectively play-
ing the role of the local functional W (see [8] for details).

Looking for holographic duals of more general QFTs
with both central charges independently nonzero is an
interesting challenge. Before we embark on this pursuit,
we should first check that QFTs whose central charges
cK and cV are both nonzero indeed exist. Examples of
strongly coupled Lifshitz field theories are very scarce to
say the least, but our point can be made by considering
the theory of the free z = 2 Lifshitz scalar Φ. When Φ is
minimally coupled to background HL gravity,

SΦ =

∫
dt d2x

√
ĝ

{
1

N̂

(
∂tΦ− N̂ i∇̂iΦ

)2
− N̂

(
∆̂Φ
)2}

,

this theory is classically invariant under (10) (with δΦ =
0), but develops an anisotropic Weyl anomaly at the
quantum level. This anomaly was calculated in [9], and
it turns out to have cV = 0. One could perhaps speculate
that cV = 0 might be a universal property of all consis-
tent QFTs, hence eliminating the need for finding gravity
duals with cV 6= 0. A simple counterexample comes from
coupling Φ to background gravity non-minimally, adding

− e2
∫

dt dDx
√
ĝN̂

{
R̂− ∇iN̂∇iN̂

N̂2
+

∆N̂

N̂

}2

Φ2

to SΦ. Even with this non-minimal coupling, this the-
ory stays classically invariant under the anisotropic Weyl
transformations (again with δΦ = 0), and develops a
quantum anomaly. We calculated this anisotropic Weyl
anomaly using the ζ-function regularization, and found
cK = 1/(32π) and cV = −e2/(8π).
Having demonstrated the existence of QFTs with cV 6=

0, we can now ask how to reproduce this second central
charge in a holographic gravity dual. One could look for
relativistic models more complicated than (3). Instead,
we will show that minimal HL gravity already accounts
for both of the independent central charges cK and cV in
the anisotropic Weyl anomaly. In order to show that, we
have performed holographic renormalization of Lifshitz
spacetimes in pure HL gravity. Since the technicalities
are quite involved (as they were in the relativistic model
(3) studied in [8]), here we only present our main results;
all technical details will appear in [23].
We find modified recursion relations for the divergent

terms in the regulated action. In the special case D =
z = 2, we solved these recursion relations and found that
the logarithmic term L̃(4) is equal to

1

2κ2

(
K̂ijK̂

ij − 1

2
K̂2

)
+

β

48κ2

(
R̂− ∇̂iN̂∇̂iN̂

N̂2
+

∆̂N̂

N̂

)2

.

This is the anisotropic Weyl anomaly in our minimal
model of Lifshitz holography with vacuum HL gravity.
It is indeed of the most general form, with the two inde-
pendent central charges given in terms of two low-energy
couplings in minimal HL gravity: cK = 1/(2κ2) and
cV = β/(48κ2).
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The remaining coupling λ does not appear in the
anomaly, but it still plays an important physical role.
Just as in the case of flat spacetime, λ enters into the
dispersion relation of the extra polarization of the gravi-
ton in the bulk. For example in the radial gauge gir = 0,
grr = 1/r2, the extra graviton mode φ is found as the lin-
earized fluctuation of the radial component of the shift
vector, Nr = φ/r. Returning to the case of generalD and
z, the linearized equations of motion imply the asymp-
totic behavior near infinity φ(r) ∼ rD± , with

D± =
1

2

{
z −D ±

√
(z +D)2 +

4D(1− z)

1− λ

}
. (14)

Standard rules of holographic duality will map D± to the
scaling dimensions ∆± of the operator dual to the extra
graviton. Unitarity of the dual field theory requires that
the scaling dimensions be real, implying (for z > 1)

λ ≥ 1 or λ ≤ λU ≡ (D − z)2 + 4D

(D + z)2
. (15)

This unitarity bound represents an intriguing analog of
the Breitenlohner-Freedman bound familiar from rela-
tivistic holography: In HL gravity, the unitarity bound
(15) allows the coupling λ to dip into the region between
1/(D+1) and 1, which according to (7) would be forbid-
den around flat spacetime. In the particularly interesting
case of D = z, we get λU = 1/D, which opens up the
previously forbidden regime 1/(D+ 1) ≤ λ ≤ 1/D.
Now that we have seen that HL gravity provides can-

didate holographic duals for QFTs with anisotropic Lif-
shitz scaling, is it possible to apply HL gravity also to
QFTs with isotropic z = 1 scaling? Interestingly, the
limit z → 1 corresponds to α → 0, the “unhealthy reduc-
tion” [6] of nonprojectable HL gravity, and may therefore
be difficult to make sense of. This is perhaps to be ex-
pected: z = 1 QFTs with such gravity duals would likely
exhibit isotropic dilatation symmetry without full rela-
tivistic conformal symmetry, a phenomenon whose ex-
amples are few and far between. Further study of our
holographic duality in the α → 0 limit may shed new
light on this rare class of QFTs.

Finally, throughout this paper we have used the effec-
tive low-energy limit of HL gravity, dominated by the
terms of the lowest dimension in the action. We have
been agnostic about how the model is completed at high
energies. This completion may come from additional de-
grees of freedom, perhaps via an embedding into string
theory; or it can be via a self-completion of HL gravity,
due to highly anisotropic scaling at short distances. This
latter possibility would be particularly interesting, as it
could open a new door away from the large N limit and
small bulk curvature. As this paper was being finalized,
complementary results about another form of nonrela-
tivistic holography with HL gravity were presented in

[24, 25]. Our results, and those of [24, 25], thus pro-
vide further evidence for the picture proposed originally
in [8], that the natural arena for nonrelativistic hologra-
phy is nonrelativistic HL gravity. It remains to be seen
whether – as suggested in [8] – the nonrelativistic field
theories whose holographic duals happen to be relativis-
tic indeed represent only a minority among all theories
with gravity duals.
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[8] T. Griffin, P. Hořava, and C. M. Melby-Thompson, JHEP

1205, 010 (2012), arXiv:1112.5660.
[9] M. Baggio, J. de Boer, and K. Holsheimer (2011),

arXiv:1112.6416.
[10] M. Henningson and K. Skenderis, JHEP 9807, 023

(1998), arXiv:hep-th/9806087.
[11] P. Kraus, F. Larsen, and R. Siebelink, Nucl. Phys. B563,

259 (1999), arXiv:hep-th/9906127.
[12] J. de Boer, E. P. Verlinde, and H. L. Verlinde, JHEP

0008, 003 (2000), arXiv:hep-th/9912012.
[13] K. Skenderis, Class. Quant. Grav. 19, 5849 (2002),

arXiv:hep-th/0209067.
[14] J. de Boer, Fortsch.Phys. 49, 339 (2001), arXiv:hep-

th/0101026.
[15] M. Fukuma, S. Matsuura, and T. Sakai, Prog. Theor.

Phys. 109, 489 (2003), arXiv:hep-th/0212314.
[16] S. F. Ross and O. Saremi, JHEP 0909, 009 (2009),

arXiv:0907.1846.
[17] S. F. Ross, Class. Quant. Grav. 28, 215019 (2011),

arXiv:1107.4451.
[18] R. Mann and R. McNees, JHEP 1110, 129 (2011),

arXiv:1107.5792.
[19] M. Baggio, J. de Boer, and K. Holsheimer (2011),

arXiv:1107.5562.
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