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It has been known for some years that entanglement entropy obtained from partial trace does not
provide the correct entanglement measure when applied to systems of identical particles. Several
criteria have been proposed that have the drawback of being different according to whether one
is dealing with fermions, bosons or distinguishable particles. In this paper, we give a precise and
mathematically natural answer to this problem. Our approach is based on the use of the more
general idea of restriction of states to subalgebras. It leads to a novel approach to entanglement,
suitable to be used in general quantum systems and specially in systems of identical particles. This
settles some recent controversy regarding entanglement for identical particles. The prospects for
applications of our criteria are wide-ranging, from spin chains in condensed matter to entropy of
black holes.

PACS numbers: 03.67.Mn, 03.65.Ud, 89.70.Cf, 02.30.Tb

INTRODUCTION

The study of subsystems of a quantum system is of
paramount importance in many branches of physics. In
quantum information it enters in the analysis of local op-
erations performed by different parties of a multipartite
system. In statistical physics it enters in the very defi-
nition of the different ensembles since this involves con-
sidering a given physical system as embedded in a bigger
one. In the physics of black holes, the distinction between
accessible and inaccessible regions of space-time plays a
crucial role for the study of black hole entropy. Indeed
as pointed out in [1], the coupling from outside to inside
the horizon is very strong, while the reverse coupling is
nonexistent! In all these situations partial trace is the
preferred tool to extract physical properties of the given
subsystems. Nevertheless, it is well-known that in some
cases of great physical interest like systems of identical
particles the use of partial trace leads to contradictory
results.
In this Letter we provide a resolution of such contra-

dictions which turns out to be of general application. We
show that, by treating observables and states on an equal
footing, a generalized notion of entanglement emerges. A
relevant consequence is that the entanglement measure
that naturally arises in this algebraic approach is shown
to be easily computed. Our approach thus opens up a
wide range of applications, from condensed matter sys-
tems, like spin chains and anyonic models, to black hole
physics.
For bipartite systems contradictory results due to par-

tial trace are explicitly seen to appear in the computation
of entanglement measure for identical particles systems.
In spite of the numerous efforts to achieve a satisfactory
understanding of entanglement for systems of identical

particles, there is no general agreement on the appropri-
ate generalization of concepts valid for non-identical con-
stituents [2–8]. That is because many concepts are usu-
ally only discussed in the context of quantum systems for
which the Hilbert spaceH is a simple tensor product with
no additional structure like, for example, H = HA⊗HB.
In this case, the partial trace ρA = TrB |ψ〉〈ψ| for |ψ〉 ∈ H
to obtain the reduced density matrix has a good physi-
cal meaning: it corresponds to observations only on the
subsystem A.

In contrast, the Hilbert space of a system of N iden-
tical bosons (fermions) is given by the symmetric (anti-
symmetric) N -fold tensor product of the single-particle
spaces. The consequence is that any multi-particle
state contains intrinsic correlations between subsystems
due to quantum indistinguishability. This, in turn,
forces a departure from the straightforward application of
entanglement-related concepts like singular value decom-
position (SVD), Schmidt rank or entanglement entropy.

We propose here an approach to the study of entangle-
ment where the notion of partial trace is replaced by the
more appropriate notion of restriction of a state to a sub-
algebra[9]. This approach is based on the well established
GNS construction[10]. It allows us to meaningfully treat
entanglement of identical and non-identical particles on
an equal footing, without the need to resort to different
criteria according to the case under study.

The usefulness of our approach will be displayed in
three explicit simple examples (for more examples see
[11]). In particular we obtain a vanishing von Neumann
entropy of a fermionic or a bosonic state containing the
least possible amount of correlations. We believe that
this settles an issue that has caused a lot of confusion
regarding the use of von Neumann entropy as a measure
of entanglement for identical particles [7, 12, 13].
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THE GNS CONSTRUCTION

A general quantum system is usually described in
terms of a Hilbert space H and linear operators acting
thereon. Physical observables correspond to self-adjoint
operators (O ≡ O† : H → H). The probabilistic char-
acter of the theory is based on the notion of state, from
which probabilities and expectation values can be com-
puted. Generically, a state is described in terms of a den-
sity matrix ρ : H → H, a linear map satisfying Tr ρ = 1
(normalization), ρ† = ρ (self-adjointness) and ρ ≥ 0 (pos-
itivity). For pure states, the additional condition ρ2 = ρ
is required, so that ρ is of the form |ψ〉〈ψ| for some nor-
malized vector |ψ〉 ∈ H.

Since the expectation value of an observable O is de-
fined by 〈O〉ρ = Tr(ρO), we can equivalently regard ρ as
a linear functional O 7→ 〈O〉ρ from the space of operators
to C. Moreover, since the space of all (bounded) opera-
tors on H forms an algebra L(H), it is possible to give a
formulation of quantum physics which does not a priori
make use of Hilbert spaces. Such a formulation was ini-
tially envisaged by von Neumann. The formulation due
to Gel’fand and Naimark and further developed by Segal
(GNS construction) led to the notion of an “abstract al-
gebra of physical observables”, or C∗-algebra. This con-
struction (explained below) has played a very important
role in quantum field theory [10] and statistical mechan-
ics [14]. We propose to show that this approach is also
very well-suited to deal with the problem described in
the introduction.

We thus consider an abstract algebra A (playing the
role of L(H) above) that represents the physical observ-
ables. Since these observables are (not yet) acting on any
Hilbert space, an abstract notion for the adjoint of an op-
erator is required. This is provided by an operation (“in-
volution”) α 7→ α∗. The algebra is assumed to contain
an identity 1A and to be closed under products, linear
combinations and under the involution. In this context, a
state is defined as a linear functional ω : A → C. Again,
since there is no Hilbert space, no density matrix appears
at this stage. But from the interpretation of ω(α) ≡ 〈α〉ω
as the expectation value of α, the conditions of normal-
ization ω(1A) = 1, reality ω(α∗) = ω(α) and positivity
ω(α∗α) ≥ 0 (for any α ∈ A) are physically motivated
properties that any state ω must, by definition, satisfy.

Given a quantum system defined by an algebra A and
a state ω, how do we recover the usual Hilbert space on
which the algebra elements act as linear operators? Since
A is an algebra, it is in particular a vector space, denoted
here as Â. Elements α ∈ A regarded as elements of the
vector space Â are written as |α〉. Then, β ∈ A will
act on |α〉 ∈ Â as a linear operator by β|α〉 := |βα〉.
A similar construction occurs when we study the regular
representation of a group through its action on its group
algebra [15].

In order for the vector space Â to become a Hilbert
space, an inner product is required. If we set 〈α|β〉 =
ω(α∗β), we obtain almost all properties of an inner prod-
uct. In fact, reality and positivity can be used to show
that 〈β|α〉 = 〈α|β〉 and also that 〈α|α〉 ≥ 0. But it can
happen that 〈α|α〉 = 0 for some non-zero elements α.

That is, there could be a null space N̂ω of zero norm vec-
tors: N̂ω = {|α〉 ∈ Â |ω(α∗α) = 0}. The solution to this
problem is obtained by considering the quotient vector
space Â/N̂ω. Its elements are equivalence classes |[α]〉,
with |[α]〉 equivalent to |[β]〉 precisely when α− β ∈ N̂ω.

In particular, if α ∈ N̂ω , then |[α]〉 = 0. The space Â/N̂ω

has now a well-defined scalar product given by

〈[α]|[β]〉 = ω(α∗β), (1)

independently of the choice of α from [α] and with no
non-zero vectors of zero norm. Its closure is the GNS
Hilbert space Hω. In this way, one obtains a repre-
sentation πω of A on Hω by linear operators [10, 16]:
πω(α)|[β]〉 = |[αβ]〉.
Partial Trace as Restriction - Consider a bi-

partite system H = HA ⊗ HB, with a density ma-
trix ρ. The description of HA as a subsystem involves
the reduced density matrix ρA, obtained through par-
tial tracing over B. Using the language of algebras and
states, we observe that the algebra corresponding to the
joint system AB is given by A = L(H). Expectation
values are computed using the state ωρ induced by ρ,
〈O〉ρ ≡ ωρ(O) ≡ TrH(ρO). Corresponding to subsystem
A, we can consider the subalgebra A0 of “local” opera-
tors of the form K ⊗ 1B, for K an observable on HA.
We can then define a state ωρ,0 : A0 → C which is the
restriction ωρ|A0

of ωρ to A0 defined by ωρ,0(α) = ωρ(α)
if α ∈ A0.
Now we observe that the reduced density matrix ρA,

obtained by partial tracing, gives rise to a state on sub-
system A that is precisely the restriction of ωρ to A0:

ωρ,0(K ⊗ 1B) ≡ TrHA
(ρAK). (2)

Hence, partial trace and restriction give the same answer
in this case. The importance of this observation lies in the
fact that when H is not of the form of a ‘simple tensor
product’, partial trace is not a suitable operation. In
contrast, if the system is described in terms of a state ωρ

on an algebraA, it is still sensible to describe a subsystem
in terms of a corresponding subalgebra A0 and of the
restriction ωρ,0 of ωρ to A0. The GNS theory is well-
suited for the study of ωρ,0 for general algebras A0 ⊆ A.
von Neumann Entropy - The representation πω

is in general reducible. This means that Hω can be
decomposed into a direct sum of irreducible spaces:
Hω =

⊕
i Hi, where πω(α)Hi ⊆ Hi for all α ∈ A. Let

Pi : Hω → Hi be the corresponding orthogonal projec-
tors. These projectors can be used to construct a density
matrix ρω on the GNS space Hω that yields the same
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expectation values as the original state ω. The von Neu-
mann entropy of ρω can then be evaluated in the standard
way. The construction of ρω goes as follows.
First, we observe that the identity 1A of A satisfies

1Aα = α for all α ∈ A, as well as 1∗
A = 1A. This,

together with (1), implies ω(α) = 〈[1A]|[α]〉. Since the
linear operator πω(α) is defined by πω(α)|[β]〉 = |[αβ]〉,
we know that |[α]〉 = πω(α)|[1A]〉. It follows that
ω(α) = 〈[1A]|πω(α)|[1A]〉. Using |[1A]〉 =

∑
i Pi|[1A]〉,

πω(α) =
∑

i Piπω(α)Pi and from the orthogonality of the
projectors, one obtains ω(α) = TrHω

(ρω πω(α)), where
ρω =

∑
i Pi |[1A]〉〈[1A]|Pi. The von Neumann entropy

of ρω is then given by S(ρω) = −∑
i µi log2 µi, where

µi = ‖Pi |[1A]〉‖2.
The crucial fact is that ω is pure if and only if the

representation πω is irreducible. In particular, the von
Neumann entropy of ω, S(ω) ≡ S(ρω), is zero if and only
if Hω is irreducible. This property depends on both the
algebra A and the state ω.
Consider now a subalgebra A0 ⊂ A of A. Let ω0 de-

note the restriction to A0 of a pure state ω on A [9].
We can apply the GNS construction to the pair (A0, ω0)
and use the von Neumann entropy of ω0 to study the
entanglement emergent from restriction.
Bipartite Entanglement from GNS - We now

illustrate how to apply the GNS construction to entan-
glement. Consider H = HA ⊗ HB ≡ C2 ⊗ C2. The
algebra of the full system is A = M2(C) ⊗M2(C). Let
us consider the normalized state vector (0 < λ < 1):
|ψλ〉 =

√
λ|+,−〉 +

√
(1 − λ)|−,+〉 , with corresponding

state ω on the algebra A: ω(O) = 〈ψλ|O|ψλ〉, O ∈ A.
Entanglement of |ψλ〉 is to be understood in terms

of correlations between “local” measurements performed
separately on subsystems A and B. Measurements per-
formed on A correspond to the restriction ω0 = ω |A0

of ω to the subalgebra A0 ⊂ A generated by elements
of the form α ⊗ 12, with α ∈ M2(C). We obtain
ω0(α⊗12) = 〈ψλ|α⊗12|ψλ〉 = λ〈+|α|+〉+(1−λ)〈−|α|−〉.
In accordance with (2), we have ω0(α⊗12) = TrC2(ρAα),
where ρA = TrB |ψλ〉〈ψλ|, namely,

ρA =

(
λ 0
0 1− λ

)
. (3)

Now we perform the GNS construction based on the al-
gebra A0

∼=M2(C) and the state ω0. These are the data
needed to describe subsystem A. For α ∈ M2(C), we
have ω0(α) = λα11 + (1− λ)α22. Now we consider A0 as
a vector space. This is just the assertion that M2(C) is,
by itself, a vector space. From the explicit form of ω0, one
readily concludes that, as long as 0 < λ < 1, there are no
null states. This means that the GNS space Hω0

is just
the four dimensional space of 2 × 2 matrices, endowed
with the inner product 〈α|β〉 = ω0(α

†β). We can con-
sider a basis of four 2× 2 matrices defined as eij = |i〉〈j|
for i, j ∈ {1, 2}, where |1〉 ≡ |+〉 and |2〉 ≡ |−〉. Then,
for example, 〈e11|e11〉 = λ and 〈e22|e22〉 = 1 − λ. With

an appropriate normalization and ordering of this basis,
one checks that the operator corresponding to α ∈ A0

is the 4 × 4 matrix πω0
(α) =

(
α 0
0 α

)
, showing in an

explicit way that the representation is reducible (the
GNS-space splits as Hω0

= C2 ⊕ C2). Following the
prescription described above one obtains, for the den-
sity matrix, ρω0

= diag{λ, 0, 0, 1 − λ}. The identity
ω0(α) = TrHω,0

(ρω0
πω0

(α)) is readily checked.
From the explicit form of ρω0

we conclude that the
entropy of the restricted state is S(ω0) = −λ log2 λ −
(1 − λ) log2(1 − λ). This is precisely the entropy of the
reduced density matrix ρA obtained by partial tracing.
Recalling that a (pure) state of the full system is entan-
gled with respect to a bipartition into subsystems if and
only if S(ρA) > 0, we have thus verified that our method
reproduces the standard results in the case of bipartite
systems. This is in fact a general result:
For bipartite systems of the form HA⊗HB (pure case),

the GNS construction yields a vanishing entropy for the
restricted state precisely when the original state of the
full-system is separable. Moreover, in the case of entan-
gled states, the entropy computed via the GNS construc-
tion coincides with the von Neumann entropy of the re-
duced density matrix computed via partial trace and can
therefore be used as an entanglement measure.
We remark that, in the pure case, entanglement can

also be characterized by the impossibility of writing the
state ω as a product state. That is, if ω is of the form
ω(α ⊗ β) = ωA(α)ωB(β) for α (β) any observable on
subsystem A (B) and ωA, ωB states on the corresponding
subsystems, then ω is a product, or separable state, and
it is not entangled. This observation makes clear that
entanglement for mixed states can also be studied using
our approach: If a mixed state ωm can be written as a
convex combination of product states, then it is called
separable, otherwise it is called entangled.

SYSTEMS OF IDENTICAL PARTICLES

In the case of identical particles, the Hilbert space of
the system is not anymore of the tensor product form.
Therefore, the treatment of subsystems using partial
trace becomes problematic. In contrast, in our approach
all that is needed to describe a subsystem is the specifi-
cation of a subalgebra corresponding to the subsystem.
Then, the restriction of the original state to the subal-
gebra provides a physically motivated generalization of
the concept of partial trace, the latter not being sen-
sible anymore. Applying the GNS construction to the
restricted state, we can study the entropy emerging from
the restriction and use it as a generalized measure of en-
tanglement.
Let H(1) = Cd be the Hilbert space of a one-

particle system. The k-particle Hilbert space H(k) for
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bosons (fermions) is the symmetrized (antisymmetrized)
k-fold tensor product of H(1). To any one-particle ob-
servable A(1) on H(1), we can associate the operator
A(k) := (A(1)⊗1d · · ·⊗1d)+(1d⊗A(1)⊗· · ·⊗1d)+ · · ·+
(1d⊗· · ·⊗1d⊗A(1)) onH(k). The operatorA(k) preserves
the symmetries ofH(k). The map A(1) −→ A(k) allows us
to study subalgebras of one-particle observables. These
constructions are most conveniently expressed in terms of
a coproduct ∆ [15]. In fact, an approach based on Hopf
algebras [15] has the advantage that para- and braid-
statistics can be automatically included. In what follows
we use the simple coproduct ∆(g) = g ⊗ g, g ∈ U(d),
linearly extended to all of CU(d). It gives the formula
for A(k) at the Lie algebra level. Physically, the existence
of such a coproduct is very important. It allows us to ho-
momorphically represent one-particle observables in the
k-particle sector. In the examples considered below, ob-
servables on such identical-particle systems can also be
described in terms of creation/annihilation operators.

In the following examples we will concentrate, for the
sake of clarity, on systems of two fermions and two bosons
(more examples will be presented in a forthcoming pa-
per). However, our methods can be easily generalized to
study many-particle entanglement.

Two Fermions - Consider, as in [4], a one-particle
space describing fermions with two external degrees of
freedom (e.g. ‘left’ and ‘right’) and two internal de-
grees of freedom (e.g. ‘spin 1/2’). They are described by

fermionic creation/annihilation operators a
(†)
λ , b

(†)
λ , with

a standing for ‘left’, b for ‘right’ and λ = 1, 2 for spin
up and down, respectively. The single-particle space is
therefore H(1) = C4. The two-fermion space is given
by H(2) =

∧2
C3 ⊂ H(1) ⊗ H(1) (

∧
denoting anti-

symmetrization). H(2) is generated from the “vacuum”
|Ω〉 using pairs of creation operators. An orthonormal ba-

sis is given by the vectors a†1a
†
2|Ω〉, b†1b†2|Ω〉 and a†λb

†
λ′ |Ω〉,

with λ, λ′ ∈ {1, 2}. The two-particle algebra A of observ-
ables is thus isomorphic to the matrix algebra M6(C).

For |ψθ〉 = (cos θa†1b
†
2 + sin θa†2b

†
1)|Ω〉, the correspond-

ing state ωθ is given by ωθ(α) = 〈ψθ|α|ψθ〉 for α ∈ A.
We now choose the subalgebraA0 to be given by the one-
particle observables corresponding to measurements at the
left location. It is generated by 1A, n12 = a†1a1a

†
2a2,

Na = a†1a1 + a†2a2 and Ti=1,2,3 = (1/2) a†λ(σi)
λλ′

aλ′ .
Now we consider the restriction of ωθ to A0 and study
the GNS representation corresponding to this choice.
For 0 < θ < π/2, the null space turns out to be
spanned by |n12〉 and |1A − Na〉. Therefore, the GNS-
space Hθ is four-dimensional and spanned by |[1A]〉 and
{|[Ti]〉}i=1,2,3. One may show that Hθ = H1 ⊕ H2,

with H1 spanned by |[T1 + iT2]〉 = |[a†1a2]〉 and |[a†2a2]〉,
and H2 spanned by |[a†1a1]〉 and |[T1 − iT2]〉 = |[a†2a1]〉.
The two representations are isomorphic. Moreover, from
the decomposition |[1A]〉 = |[a†2a2]〉 + |[a†1a1]〉 of |[1A]〉
into these irreducible subspaces, we obtain the entropy

S(θ) = − cos2 θ log2 cos
2 θ − sin2 θ log2 sin

2 θ.

For θ = 0, the null space is spanned by |n12〉, |1A −
a†1a1〉, |a†2a2〉, |a†1a2〉. The GNS-space H0 is C2 and iso-
morphic to the above H2. Similarly, for θ = π/2 we find
that the GNS-space is isomorphic to the above H1. Both
GNS-spaces are irreducible, so that the corresponding
ω0,0 and ω π

2
,0 are pure states with zero entropy.

This result should be contrasted with the entropy S =
log2 2 obtained via partial trace for states with Slater rank
one such as ω0,0, ω π

2
,0 above (cf. [5, 7] and references

therein), that correspond to simple Slater determinants
and, therefore, should not be regarded as entangled states.

Two Bosons - Consider the one-particle space
H(1) = C3 with an orthonormal basis {|e1〉, |e2〉, |e3〉}.
The two-boson space H(2) is the space of symmetrized
vectors in H(1) ⊗H(1). It corresponds to the decomposi-
tion 3⊗3 = 6⊕3̄ of SU(3). An orthonormal basis forH(2)

is given by vectors {|ei ∨ ej〉}i,j∈{1,2,3} where ∨ denotes
symmetrization (and the vectors are normalized). The
two-boson algebra of observables A(2) is thus isomorphic
to M6(C).

For the particular choice |ψθ,φ〉 = sin θ cosφ|e1 ∨ e2〉+
sin θ sinφ|e1∨e3〉+cos θ|e3∨e3〉, the corresponding state
is ωθ,φ defined by ωθ,φ(α) = 〈ψθ,φ|α|ψθ,φ〉 for any α ∈ A.
For the sake of concreteness, we choose A0 to be given
by those one-particle observables pertaining only to the
one-particle states |e1〉 and |e2〉.
We consider the restriction ωθ,φ |A0

. The 6 represen-
tation under the SU(2) action on |e1〉 and |e2〉, splits as
6 = 3 ⊕ 2 ⊕ 1. The subalgebra A0 is given by block-
diagonal matrices. Each block corresponds to one of the
irreducible components in the decomposition 6 = 3⊕2⊕1.
The dimension of A0 is therefore 32 + 22 + 12 = 14.

The construction of the corresponding GNS-
representation follows the same procedure as in
the previous example. The von Neumann en-
tropy as a function of the parameters is given
by S(θ, φ) = − sin2 θ[cos2 φ log2(sin θ cosφ)

2 +
sin2 φ log2(sin θ sinφ)

2]− cos2 θ log2(cos θ)
2.

CONCLUSIONS

The strong point of our approach is that it provides
a precise, universal, and mathematically natural way to
characterize and quantify entanglement for systems of
identical particles. For many years it has been known
that the von Neumann entropy based on partial tracing
does not give the physically correct answer when applied
to systems of identical particles. Different (i.e. non-
universal) criteria have been developed which strongly
depend on the statistics of the particles. In contrast, our
approach is conceptually clear and applies equally to any
quantum system. It thus promises to resolve the contro-
versy regarding entanglement of identical particles [7].
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