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Combining geometric mechanics theory, laboratory robotic experiment and numerical simulation,
we study the locomotion in granular media (GM) of the simplest non-inertial swimmer, the Purcell
three-link swimmer. Using granular resistive force laws as inputs, the theory relates translation and
rotation of the body to shape changes (movements of the links). This allows analysis, visualization,
and prediction of effective movements that are verified by experiment. The geometric approach also
facilitates comparison between swimming in GM and in viscous fluids.

Introduction–Locomotion of animals and robots
emerges through the interplay of body deformations cou-
pled to an environment. Finding this relationship is often
a challenge: for example, in Newtonian fluids, although
researchers have long analyzed [1–3] the Navier-Stokes
equations and simpler representations [4] to gain insight
into flight and swimming, analytic investigation is often
impossible, and high fidelity approximations are compu-
tationally costly. Studying the motion of organisms [5]
and robots [6] that maneuver through complex environ-
ments like sand, rubble, and debris, and microscopic or-
ganisms [3] that move through complex biomaterials can
be even more complicated—often such materials are not
even described by equations at the level of Navier-Stokes.

Certain kinds of movement are kinematic, in that the
net displacement is a function of the deformation and is
independent of its rate. Taking advantage of this prop-
erty for low Reynolds number (Re) swimming in viscous
Newtonian fluids, Shapere and Wilczek [7] introduced
a geometric approach using the notion of gauge sym-
metries, or equivalencies in the system dynamics across
different configurations. These symmetries reduce the
effective dimensionality of the system and facilitate in-
terpretation of dynamics in terms of geometric concepts
such as areas, lengths, and curvatures. The geometric
approach has been further developed [8, 9] and now en-
ables evaluations [10] of systems’ locomotion capabilities
in the form of low-dimensional, readily visualizable rep-
resentations of the system’s motion for any gait (cyclic
change in body shape). These tools allow useful gaits
to be identified by inspection, without costly trial-and-
error optimization [11]. However, the insights afforded by
these geometric tools have been restricted to systems—
including viscous swimmers [7, 9, 12, 13] and planar reori-
enting satellites [14]—with analytically-describable linear
dynamics.

Previously, we studied [15] the sand-swimming of a
sandfish lizard and a robot model in dry granular media

FIG. 1. Three-link swimmers: (A) The robot resting on a bed
of plastic spheres. The lit masts at the ends of the links are
tracking markers. The rubber skin on the front section has
been removed to display the mechanical structure. Each link
is 5.4 × 2.8 × 14.7 cm3. (B) Analytical three-link model with
a body frame corresponding to a weighted average of the link
positions and orientations. (C) Force laws for GM (red) and
a long slender rod in a low Re fluid [1]. Scaling is chosen such
that the maximum of F|| is equal to that of the GM.

(GM), arguably the simplest flowing terrestrial material.
In theory, simulation and experiment, we demonstrated
that the GM surrounding an immersed undulatory swim-
mer could be modeled as a “frictional fluid” in which
forces are dominated by Coulomb friction, making them
insensitive to rate and in which inertial effects are small.
However, our analysis could only hint at the range of be-
haviors possible in sand-swimming. Here we demonstrate
the efficacy of the geometric approach to reveal princi-
ples of swimming in GM, despite a lack of fundamental
equations of motion. We empirically generate a geomet-
ric swimming model in GM for the three-link swimmer



2

(Fig. 1) first introduced by Purcell [16] as a simple swim-
mer to study locomotion in viscous fluids [17]. We use
this model to analyze different locomotor behaviors and
to compare swimming in GM to swimming in a viscous
fluid.
Geometric mechanics, the resistive force model, and

the three link swimmer–The key ingredient in applying
geometric theory to motion in GM is the ansatz that
at any given shape (with joint angles specified by the
vector α = (α1, α2)), the swimmer’s body velocity ξ is
linearly proportional to its shape velocity (α̇), such that
the relationship between shape, shape velocity, and body
velocity can be expressed as

ξ = A(α) · α̇ = (Ax(α) · α̇,Ay(α) · α̇,Aθ(α) · α̇), (1)

where A(α) is referred to as the local connection (or Ja-
cobian) matrix [18]. Local connection models have been
identified for diverse locomotion modes [7–9, 12, 14, 18–
21], in particular for swimmers in low Re [7, 12, 20, 21],
viscous environments that qualitatively resemble those
seen in granular swimming [15]. The existence of such a
model for motion in GM is further suggested by our pre-
vious results [15] showing that sand-swimming is kine-
matic. Local linearity between shape and position veloc-
ities sufficies to produce kinematic motion, and is only
slightly stronger than the necessary condition, propor-
tionality between body and shape velocities.
GM lack equations equivalent to Navier-Stokes, so an-

alytic derivations of the local connection used previously
are not applicable. In their place, we have developed a
numerical means of identifying A, based on our empir-
ically obtained granular resistive force laws [6, 15] and
the observation that inertial forces on a low-speed swim-
mer are sufficiently small that the swimmer moves quasi-
statically. The force laws (Fig. 1) resemble those in low
Re fluids [22], although forces perpendicular to body seg-
ments are enhanced relative to those in true fluids. In-
tegrating these forces along the swimmer’s body at dif-
ferent α, α̇, and ξ combinations and solving for the com-
binations that give force equilibria yields mappings from
shape velocity to body velocity at each shape.
We find that across the space of shapes, graphs of the

components of ξ as functions of α̇ are nearly planar, as
in Fig. 2. This planarity means that, despite the lack of
an analytic linear relationship between shape and body
velocities, there exists an implicit linear relationship to
which we can fit a local connection of the form in Eqn. 1.
Each row of A(α) is then obtained by finding the best-fit
planes for each component of the body velocity at each
shape α [23]. Taking these components over the set of
shapes, we visualize each component of A as a vector
field on the shape space (Fig. 3), termed a connection

vector field.
Testing the linear theory– To test if the linear approxi-

mation (local connection approach) of the system dynam-
ics can accurately compute movement over different gaits,

FIG. 2. The components of ξ for a particular initial shape
(inset), with α = (0.85,−1.14). The components of the equi-
librium ξ (shown here for a body frame attached to the middle
link) are almost linear functions of the shape velocity, and so
can be characterized by the gradient vectors of the best-fit
planes (black arrows). The color map shows the agreement
between the equilibrium ξ and the fitted plane, with light
regions exhibiting the least error.

FIG. 3. (A) The local connection vector fields (Eqn. 1)
A

x,Ay,Aθ. The red path through the shape space denotes
a circle gait, and the grey circle identifies the gradients taken
from Fig. 2. (B) Sequence of shapes and displacements along
the gait shown above. The vertical red line is a reference po-
sition for displacement. (C) Along the gait, the ξ and net dis-
placement predicted by the linear model (thick red line), the
DEM simulation (dotted line) and robot experiments (thin
black line) for a representative experiment at frequency 0.5
Hz.

we constructed a three-link robot (mass 30g) in both
experiment and multi-particle discrete element method
(DEM) simulation, using identical techniques and param-
eters to those reported in [6]. The robot (Fig. 1) consists
of three wooden segments connected by two servomotors
(Hitec, HSR 5980SG). The segments are covered by a
thin latex sleeve giving the robot a body-particle coeffi-
cient of friction of 0.4. The robot is fully immersed in
a large bed of 5.87 ± 0.06 mm diameter plastic spheres
at a depth of 5.5 cm from the top of the robot. Mo-
tion was tracked through a camera via the position of
LED masts. Data was collected and averaged over 3
runs. The DEM simulation used 6 mm diameter particles
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and a particle-particle and particle-body collision model
incorporating Hertzian contact, normal dissipation and
tangential Coulomb friction, with parameters previously
validated against experiment [6].

Integrating the linear model’s prediction of the swim-
mer’s motion during a shape change is equivalent to tak-
ing line integrals on the connection vector fields along
paths the system traces. For example, consider a gait
in which the joints oscillate sinusoidally with a quarter-
phase offset, producing a traveling wave of deformation
along the body. This gait traces out a circle in the space
of joint angles, shown in Fig. 3A, generating positive
and negative ξ as it flows along and against the vector
fields, depicted in Fig. 3C ; these velocities can then be
integrated into net displacements relative to the start-
ing body frame. As illustrated in Fig. 3C, the x and
θ components of the velocities and integrated positions
predicted by the linear model agree with those found in
experiment and DEM. The y component of the veloc-
ity and displacement from the linear model qualitatively
agree with those from the experiment and DEM but the
magnitudes are reduced. We will return to this point.

Constraint curvature functions–The local connection
model of granular swimming simplifies evaluation of the
displacement produced by a gait, but its greater useful-
ness derives from the ability to calculate the associated
constraint curvature functions (CCFs). These functions
(calculated following the procedure in [9, 20]) are plot-
ted for GM in Fig. 4A. CCFs are closely related to the
curls of the connection vector fields. In an extension
of Stokes theorem, this curl-like nature means that the
net displacement induced by a gait corresponds to the
area integrals of the CCFs over the region the gait en-
closes in the shape space. Stokes theorem only applies
for systems where the integrations are commutative and
so does not directly apply to our swimmers, for which
body-frame translations and rotations do not commute.
CCFs circumvent this limitation by augmenting the curl
with a Lie bracket term that linearly approximates the
effects of noncommutativity. We introduced [10] coordi-
nate optimization techniques that minimize the error in
this linearization; for the granular-swimmer considered
here (as in [10] and [24]) the error is negligible.
By visualizing gaits as enclosures of area, the CCFs

provide a comprehensive overview of how gait patterns
interact with system constraints to produce net displace-
ment. For example, we can explain the net forward dis-
placement for the gait in Fig. 3a by overlaying it on the
xb CCF from Fig. 4A (see inset of Fig. 5A). The large
negative region at the center of the xb plot indicates that
cycles in this region produce net x translation relative to
the starting frame, with clockwise (negatively oriented)
cycles generating positive displacement. See SI Movie 1.

The CCFs also give insight into the relationship be-
tween net displacement and magnitude of the joint mo-
tions. For small amplitude circular gaits, where the sign

FIG. 4. Fundamental geometric diagrams, the constraint cur-
vature functions (CCFs) for the (A) granular three-link swim-
mer and (B) low Re swimmer of equivalent dimensions (bot-
tom). Each swimmer’s body frame is optimized to a weighted-
average of the three link frames, see [25].

FIG. 5. Predictions of movement for the three-link swimmer:
(A) CCF estimate of displacement compared to experimental
and DEM results as a function of stroke amplitude (radius
of the circle traced in the shape space). Dashed horizontal
lines indicate displacements for the butterfly gait in DEM and
RFT. The inset shows the circle gait overlaid on the xb CCF,
along with a graphically-optimized “butterfly” gaits (dashed
path). (B) CCF estimate for net rotation for figure-eight gait
of different stroke amplitude, the radius of one circle of the
figure-eight overlaid on the θb CCF in the inset. Frequency
was 0.5 Hz in (A) and 0.17 in (B).

is negative, the net displacement scales approximately
quadratically with amplitude, tracking the rise in the en-
closed area. At large amplitudes, the gait includes pos-
itive regions near the corners of the plot, reducing the
area integral. These behaviors point to the optimal am-
plitude as that which encompasses as much of the central
negative region as possible while avoiding the outlying
positive regions. This geometric interpretation also sug-
gests gaits, such as the butterfly in the inset of Fig. 5A,
that produce more displacement than any circle by better
conforming to the sign-definite regions; such a gait was
created by fitting a polynomial curve to a set of points
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that were on the zero-set, symmetric about the origin,
and avoided extreme joint angles [26].
Agreement between theory, experiment and simulation

is excellent at small amplitudes and good at larger am-
plitudes. However, while the CCFs qualitatively predict
forward movement at the highest amplitudes, quantita-
tive agreement is lacking. Previous work [10, 12] suggests
a cause for this error. The velocity error is largest when
joint angles are near the α1 = α2 line and away from
the origin, i.e., with links in a “C” shape. This error
appears in Fig. 3C as the system experiencing greater-
than-expected velocity in the body x and y directions in
the vicinity of this line (near t = 0.5). In similar sys-
tems (e.g. the “kinematic snake” [10, 19]), this line is a
kind of kinematic singularity, which forces constraints to
slip. For granular-swimming, in which forces are inher-
ently nonlinear, we postulate that the singularity makes
the system reach different equilibria.

The CCFs facilitate study of movements that are rela-
tively unexplored in swimming locomotion, for example,
turning in place, see SI Movie 2. To design this gait, we
observe that the x component of the CCF is evenly sym-
metric around both the α1 = α2 and α1 = −α2 lines, the
y component is odd around α1 = α2 and even around
α1 = −α2, and the θ component is even around α1 = α2,
but odd around α1 = −α2. The figure-eight gait depicted
in the inset of Fig. 5B will therefore produce a net ro-
tation of the system—the two loops are in opposite di-
rections in oppositely-signed regions, and so their effects
add in θ while canceling in x and y. In this gait, agree-
ment between theory and experiment/DEM is excellent;
we hypothesize that here the singularity described above
is avoided.

The CCFs also facilitate comparison of swimming in
different environments. The granular swimmer’s CCFs in
Fig. 3A share a structure with those of other three-link
swimming systems [10, 12]: a central well and bi-even
symmetry in the x function, and odd symmetry in the yb

and θb functions. Comparing them with equivalent plots
for the low Re system [12] (Fig. 3B) highlights the differ-
ences between the environments. Most significantly, the
xb function’s magnitude is 1.5 − 2 times larger for the
granular swimmer than for the low Re system, in accord
with the relatively larger F⊥ in the granular medium.
Interestingly, this relationship is reversed for the θb func-
tions, indicating that turning gaits produce less rotation
for swimmers in GM relative to those in low Re. We
note that the zero-sets we identify on the CCFs repre-
sent the optimal solutions discovered by the parametric
optimization methods in [11].

In summary, CCFs advance our understanding of lo-
comotion by substituting geometric insight for laborious
calculation. Since the technique requires only empirical
force laws, we argue that this method lays the ground-
work for geometric analysis of biological and robotic loco-
motion in environments that are not yet (and may never

be) described by comprehensive equations of motion. We
propose that the geometric insight gained by CCFs for
locomotion will be analogous to insight into complex dy-
namical systems provided by low dimensional maps [27].
Future investigations will advance the linear model to
represent dynamics near geometric singularities and in-
corporate effort-based distance metrics [13] to describe
locomotive efficiency. It will also be interesting to com-
pare optimal locomotor strategies in different media com-
bining the CCF analysis with effort metrics to identify
maximally-efficient gaits. Finally, the use of continuous
curvature modes [13] will allow application of our frame-
work to continuous systems like the biological sandfish,
snakes that move within yielding substrates like loose
soils, and even nematodes and spermatoza in complex
biofluids [28].
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