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Porous media, heterogeneous materials, and biological tissues are examples of uniquitous

disordered systems, understanding of which and any physical phenomenon in them entails hav-

ing an accurate model. We show that a new reconstruction method based on a cross-correlation

function (CCF) and a one-dimensional (1D) raster path provides accurate description of a wide

variety of such materials and media. The reconstruction uses a single 2D slice of data to re-

construct an entire 3D medium. Seventeen examples are reconstructed accurately, as indicated

by two connectivity functions that we compute for them. The reconstruction method may be

used for both unconditioned and conditioned problems, and is highly efficient computationally.
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Disordered multiphase media, ranging from porous materials to biological tissues, are ubiq-

uitous and their understanding is of fundamental importance [1,2]. Hence, their modeling has

been a long-standing problem. In principle, one needs an infinite set of n-point correlation func-

tions in order to obtain a complete statistical characterization of such disordered media. Chief

among such functions is [1,2] the standard n-point correlation function [1-3] Sn(x1,x2, · · · ,xn),

the probability of locating n points at positions x1,x2, · · · ,xn, all in one phase. But, measuring

Sn for n ≥ 5 is impractical, while it is a formidable challenge for n = 3 and 4, although [5] S3

and S4 do not provide much more information beyond what S2 does. Describing a disordered

medium based solely on S2 is not accurate [4,5]. Thus, a long-standing problem has been the

development of correlation functions that not only can be measured, but also provide accurate

description of disordered media.

In this Letter we introduce a cross-correlation function (CCF) that is shown to provide

accurate description of disordered media. To demonstrate this we use an inverse method,

usually referred to as the reconstruction technique [1,2,6-10]: given some data for a target

system (TS), one tries to construct a model for it that closely matches the data. Complete

reconstruction is impractical. Thus, one generates an ensemble of realizations to compute

the pertinent properties. We incorporate the CCF in a new reconstruction algorithm that is

different from those of the past, and produces accurate realizations of the TS, even if it is

highly complex. The reconstruction does not use computationally intensive methods, such as

simulated annealing [11], which have been used in the past reconstruction methods. As such,

it is highly efficient computationally.

Let G represent the computational grid used in the reconstruction. The template (blocks)

of G by which the TS is reconstructed is denoted by T, while DT (u) is the data event at

position u in T. We use data event because during the reconstruction DT changes. Finally, O

represents the overlap regions between neighboring templates. We describe the CCF and the

reconstruction method for two-dimensional (2D) media; the extension to 3D media is explained

in the Supplementary Information (SI) [12]. Let TS(x, y) represent the datum at point (x, y)

of a TS of size Lx × Ly, with x ∈ {0, · · · , Lx − 1} and y ∈ {0, · · · , Ly − 1}. Examining the TS,

one focuses on a portion DT (u) of size ℓx × ℓy and regenerates it based on the data, such that

it matches the corresponding portion in the TS. We introduce a CCF to quantify the similarity
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between the TS and DT ,

C(i, j) =
ℓx−1∑

x=0

ℓy−1∑

y=0

TS(x+ i, y + j)DT (x, y) , (1)

with 0 ≤ i < Lx + ℓx − 1 and 0 ≤ j < Ly + ℓy − 1. Equation (1) indicates that the desired

position of (i, j) - the best match with the TS - is one that maximizes C(i, j). If the size of the

TS is not too large, all the computations are carried out in the spatial domain. When the TS

is very large, calculations in the Fourier space result in significant savings in the computations

[13].

Consider, first, unconditional reconstruction - one in which the algorithm must not honor

exactly specific hard (quantitative) data (HD) in the TS. G is partitioned into blocks of size

Lx × Ly. Between every two neighboring blocks is an O region of size ℓx × ℓy representing

DT , where ℓx (ℓy) = Lx (Ly) and ℓy(ℓx) ≪ Ly (Lx), if the O region is between two templates

that are neighbors in the x (y) direction. Suppose, for example, that the 1D raster path is

along the vertical (y) direction; see the SI [12] for an illustration. The algorithm begins at the

path’s origin in G - the leftmost bottom template in G - and moves along it. A realization

of the disorder in the TS, equal in size to T, is generated and inserted into the first block,

part of which represents the O region with the next block. The purpose of the O region is to

preserve the continuity near the common boundary between two blocks. Thus, one generates

the best realization of the disorder for the next neighboring block along the path whose bottom

O section makes a seamless transition between the two. If several realizations of the disorder

have the same degree of similarity with O, one of them is selected randomly. The procedure

continues until reconstruction of the first vertical column of the raster path is finished. The

algorithm then moves to the bottom block of the next vertical column of G and uses the same

procedure, taking into account its O region with the neighboring block on the left. The next

block is more complex as it has two O regions, at the bottom and on the left. Thus, the

reconstruction proceeds as follows

(i) Since we do not know a priori the location of maximum of the CCF, we use 1/C and set

a threshold 0 ≤ δ ≤ 1. If δ = 0, the similarity between the O regions and the corresponding

portions in the TS is perfect, whereas δ > 0 generates an ensemble of realizations that do not

match the TS exactly. After some preliminary simulations we used, δ = 0.2.

(ii) Generate for the first block of G along the raster path a realization of the disorder in
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the TS, based on and constrained by the statistics of the TS (volume fractions of the phases),

or by sampling TS.

(iii) Compute the CCF between the O and the entire TS.

(iv) If 1/C < δ, the realization is accepted. If not, other realizations are made, or δ is

increased somewhat, until 1/C < δ. Typically, one generates 30-50 realizations in order to

satisfy the similarity criterion.

(v) Fill up the next block with a realization of the disorder, identify the new O with the

next block to be reconstructed, and repeat (ii) - (iv). The entire procedure continues until G

is completely reconstructed.

In conditional reconstruction G contains some HD that must be honored exactly, due to

which the data event DT is the entire block, not just the O regions. Thus, conditional recon-

struction is a two-step process. First, one identifies the realizations that honor the HD, and

then determines the matching DT . The algorithm first computes C and checks whether 1/C < δ.

Those that honor the HD are identified, one of which is selected randomly and inserted in the

T.

A problem may arise if T is very large, or if a realization does not honor the HD, leading

to discontinuities and failure of the reconstruction. In such a rare case one may increase the

threshold δ to obtain new realizations that, although may have significant differences with the

O regions, they are still acceptable. δ is increased until a proper data event DT is identified.

But, doing so also inserts incorrect structures in the ensemble. To overcome the problem, we

use an adaptive algorithm described below.

The algorithm’s parameters are the templates’ size and the threshold δ. Our study indicates

that the templates’ size is the most important factor, which depends on the heterogeneity of

the TS: for a relatively homogeneous TS a coarse grid suffices, whereas highly disordered media

require grids with small blocks. We have developed a method for determining the optimal block

size based on the Shannon entropy [14] S. The TS is partitioned into large coarse blocks, for

each of which S is computed where, S =
∑n

i=1 pi ln pi, with pi being the probability of having

states i in the TS, and n the number of pixels in the block. pi is given by, pi = histogram

of sample i/length of the sample. The entropies are normalized by their maximum value, and

denoted by Ŝ. A quadtree-based partitioning based on Ŝ is then used. If Ŝ ≪ 1, the coarse

block is homogeneous enough that need not be partitioned any further. But, if Ŝ is close to
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1, the coarse block is divided into 4 (8 in 3D) blocks, the procedure is repeated for the new

smaller blocks and continued until the optimal block size is determined. The optimal block size

for the binary images of the TS analyzed here was 20 × 20 with an O region of size 20 × 4,

while the corresponding sizes for the continuous TS were 25× 25 and 25× 5.

To quantify the accuracy of the reconstruction, we compute two connectivity functions for

the TS and its reconstruction. One [5,15] is the two-point cluster (TPC) function C2(r), the

probability of finding two points separated by a distance r in the same cluster of the phase

of interest. The second measure is the multiplepoint connectivity (MPC) function [16], the

probability p(r;m) of having a sequence of m points in a phase in a direction r. If an indicator

function I(i)(u) is defined by, I(i)(u) = 1, if u ∈ phase i, and I(i) = 0, otherwise, then,

p(r;m) = Prob{I(i)(u) = 1, I(i)(u+ r) = 1, · · · , I(i)(u+mr) = 1} . (2)

Reproducing p(r;m) represents a most stringent test of the method’s accuracy. We used m =

100 and, for convenience, delete m and denote the MPC function by p(r). We note that the

previous methods that used optimization techniques based on, for example, simulated annealing,

become computationally intractable if the number of data points is very large, whereas the

computational cost of the present algorithm is very low, even for a very large 3D system.

A most difficult problem in reconstruction is using a single 2D section of an entire 3D

medium in order to reconstruct it. Such 2D sections are obtained by, for example, x-ray com-

puted tomography, whereas 3D images are difficult and costly to produce. Thus, an algorithm

that utilizes 2D data to reconstruct a 3D medium is a powerful tool for studying disordered

materials and media. We show that our reconstruction method is such an algorithm, hence

demonstrating that the amount of the data used in the algorithm is not the crucial factor for

its accuracy.

As the first example we reconstruct a sample of Berea sandstone of porosity 0.22, whose

complete 3D digitized image is available [17]. One 2D slice is used for reconstructing the

next layer and adding it to the medium under reconstruction. Since the first layer represents

actual hard data (HD) taken from the 3D image, the reconstruction is conditional. The newly

reconstructed layer acts as a source of the HD for the next layer to be reconstructed. The

important questions are, (i) how should one select the HD in each layer? (ii) How many HD

points from the 2D section should one select for reconstructing the next 2D section? If too much
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information is used, the next layer will be unrealistically similar to the current one, whereas if

the selected HD is too little, the connectivity will be lost. (iii) Where in the 2D slice should

one pick the HD? To address these we proceed as follows.

We first use the quadtree partitioning and the Shannon entropy to superimpose a nonuniform

grid on the 2D slice. The smallest cell in the 2D grid is of size 3× 3, from which a single data

point at the center is used, while from all other larger cells 2-5 percent of the data are selected at

random. Because the HD must be honored exactly, the connectivity is preserved automatically.

Every time a 2D slice is reconstructed and added to the system, it is used in the same way for

reconstructing the next slice.

The single 2D section of the 3D image of Berea sandstone that we used had a size of 200×200

pixels, representing 2% of the total data for the 3D sample. A total of 199 2D sections were

reconstructed and added to the initially selected 2D section. Figure 1 presents the connectivity

functions C2(r) and p(r), computed for both the Berea sandstone and its reconstruction. The

agreement is excellent. The total computation time for the reconstruction was about 500 CPU

seconds.

Next, we generated a synthetic 3D heterogeneous porous medium on a 2003 grid using

geostatistical techniques [18]; see Fig. 2. The local permeabilities vary by three orders of

magnitude. We used one 200× 200 slice at the grid’s center and reconstructed the 3D porous

medium. The results are shown in Fig. 2. The agreement is again excellent.

The next 2D-to-3D reconstruction example that we present is a granular open-cell cupper

foam that contains about 800 cells with a porosity of 0.33. The size of its binary image is

1283 pixels, and we used a 2D slice of size 128× 128 to reconstruct the entire image. Figure 3

presents the results. Once again, the agreement is excellent.

It is useful to make a comparison between the performance of the present reconstruction and

that of an accurate method developed previously. Thus, we reconstructed a 2D piece of concrete

[19] with nanometer-sized pores and centimeter-sized aggregates, using a binarized image of a

cross section of the material with a linear size of 170 pixels. The results are shown in Fig. 4.

We also computed the TPC and MPC functions for another reconstruction of the same material

due to Jiao et al. [5]. Whereas the CCF reproduces p(r) very accurately, Jiao et al.’s does

not, because theirs is based on C2(r), a radially-averaged TPC function that contains much less

microstructural information than the CCF. [A recently-proposed [20] dilation/erosion procedure
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using a generalized C2(r) yields a better reconstruction of the same sample.] Depending on

the template size, the 2D CCF-based reconstruction might use more data than the Jiao et al.’s

method and, thus, one might argue that it must produce more accurate results. Even if true, as

we demonstrate for the 2D-to-3D reconstructions, it is not the primary factor for the method’s

accuracy. The amount of the data used is based on the templates’ size. If the template size is

much smaller than the TS (as is the case here), then, the amount of data used is also small.

The last example is a digitized realization of an equilibrium distribution of equal-sized hard

spheres [5], generated by the Metropolis Monte Carlo method, with particle volume fraction of

0.446 and a linear size of 100 pixels. Figure 5 presents the results and compares them with the

TPC and MPC functions that we also computed for another reconstruction of the sample, due

to Jiao et al. [5]. While both reconstructions produce the C2(r) function so accurately that it

is nearly impossible to distinguish them, the CCF-based reconstructed sample also reproduces

p(r) very accurately.

We emphasize a few important points. (i) The reconstruction of a continuous TS based on

C2(r) [5] is not only a function of the separation distance r, but also of the values of the pixels,

whereas in the CCF-based method the computations for a continuous TS and binary images

remain the same. (ii) The method’s aim is not reproducing explicitly all the statistical properties

of a TS, but reproducing multiscale structures stochastically, such that they reconstruct the

multiplepoint statistics. It is this feature of the method that generates accurate reconstruction.

(iii) The method is particularly accurate for highly heterogeneous media.

In addition to the results presented here, twelve other heterogeneous materials and media

were studied. The results have been deposited as the Supplementary Information [12].

Summarizing, the advantages of the approach, applicable to any type of disordered material

and media, are, (i) low computational cost, but high accuracy; (ii) the ability to include hard

data in the computations; (iii) the ability to do the computations in parallel mode; (iv) recon-

structing a 3D medium based on a single 2D section, and (v) the applicability of the method

to nonstationary media, which are most prevalent in practice, but have been very difficult to

reconstruct. This aspect will be reported in the near future.

Work at the USC was supported in part by the Department of Energy. We thank M.

Saadatfar for the data of Figure 3, and Yang Jiao and Sal Torquato for the data of Figure 5.
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Captions

Fig. 1 The target system (TS) is a 3D sample of Berea sandstone. Shown is the comparison

between the connectivity functions C2(r) and p(r) for both TS and the reconstructed medium.

Fig. 2. The TS is a 3D hetereogeneous porous medium. The color bar indicates the local

porosities.

Fig. 3. The TS is a 3D sample of cupper foam.

Fig. 4. The TS is the cross section of a binarized image of concrete microstructure. Com-

parison is made between the computed connectivity functions for the CCF-based reconstruction

and that developed by Jiao et al. [5].

Fig. 5. The TS is a digitized realization of a hard-sphere packing with porosity of 0.446.
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