
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Generation of Entangled Photons in Graphene in a Strong
Magnetic Field

Mikhail Tokman, Xianghan Yao, and Alexey Belyanin
Phys. Rev. Lett. 110, 077404 — Published 14 February 2013

DOI: 10.1103/PhysRevLett.110.077404

http://dx.doi.org/10.1103/PhysRevLett.110.077404


Generation of entangled photons in graphene in a strong magnetic field

Mikhail Tokman,1 Xianghan Yao,2 and Alexey Belyanin2, ∗

1Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843 USA

(Dated: 23 September 2012)

Entangled photon states attract tremendous interest as the most vivid manifestation of nonlo-
cality of quantum mechanics and also for emerging applications in quantum information. Here we
propose a mechanism of generation of polarization-entangled photons, which is based on the nonlin-
ear optical interaction (four-wave mixing) in graphene placed in a magnetic field. Unique properties
of quantized electron states in a magnetized graphene and optical selection rules near the Dirac point
give rise to a giant optical nonlinearity and a high rate of photon production in the mid/far-infrared
range. A similar mechanism of photon entanglement may exist in topological insulators where the
surface states have a Dirac-cone dispersion and demonstrate similar properties of magneto-optical
absorption.

PACS numbers: 78.67.Wj, 42.65.Lm, 42.50.Ct

To date, the most widely used method of generating
entangled photons is based on the spontaneous paramet-
ric down-conversion in a nonlinear crystal possessing a
second-order nonlinearity [1, 2]. In this process, a pho-
ton from a strong pump field at frequency ωp splits into
two signal photons, ωp = ω1 +ω2 which can be entangled
in polarization, frequency, and wave vector. Another way
to generate quantum-correlated photons through a para-
metric nonlinear optical process is spontaneous four-wave
mixing in the optical fibers, in which two pump photons
are converted into two signal photons, 2ωp = ω1 + ω2,
utilizing a third-order nonlinearity of silica [3]. This pro-
cess is obviously compatible with fiber communication
technologies, although it does not directly lead to po-
larization entanglement. In both nonlinear processes the
photon pair production efficiency is very low. An alterna-
tive approach utilizing the radiative decay of biexcitons
in semiconductor quantum dots [4–6] allows photon pairs
to be generated on demand but requires cooling down to
liquid helium temperatures.

Graphene has unusual electronic and optical proper-
ties stemming from linear, massless dispersion of elec-
trons near the Dirac point and the chiral character
of electron states [7, 8]. Magnetooptical properties of
graphene and thin graphite layers are particularly pecu-
liar, showing multiple absorption peaks and unique se-
lection rules for transitions between Landau levels [9–
12]. Recent progress in growing high-quality epitaxial
graphene and graphite with high room-temperature mo-
bility and strong magnetooptical response attracted a lot
of interest and paved the way to new applications in the
infrared optics and photonics [13–15]. The time is ripe to
explore the nonlinear and quantum optical properties of
a magnetized graphene and their applications. We have
recently shown that graphene placed in a magnetic field
possesses perhaps the highest infrared optical nonlinear-

∗Electronic address: belyanin@tamu.edu

ity among known materials [11]. Here we argue that an
extremely strong nonlinearity of graphene in combination
with its peculiar properties of the Landau levels open new
avenues for generation of the nonclassical light states, in
particular polarization-entangled photons.
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FIG. 1: Geometry of the proposed experiment. Two pump
fields at frequencies ωHF and ωLF normally incident on a
sheet of graphene placed in a magnetic field B generate entan-
gled photons with opposite sense of the circular polarization.

The proposed scheme is shown in Figs. 1 and 2. Here
the energies of the Landau levels for electrons near the
Dirac point are given by εn = sgn(n)~ωc

√
|n| , where

n = 0,±1,±2..., ωc =
√

2υF /lc, υF ≈ 108 cm/s the

electron Fermi velocity, and lc =
√

~c/eB the magnetic
length. We assume that the graphene is biased or doped
so that the Fermi level is between the states with n =
-2 and n = -1, i.e. the state n = -2 is occupied and the
states above are empty in the absence of pumping. Two
incident strong pump fields at frequencies ωHF and ωLF
resonant to the transitions from n = -2 to n = 1 and from
n = -2 to n = -1 respectively, generate two signal fields
with opposite sense of the circular polarization at fre-
quencies ω(−) and ω(+) that are close to resonance with
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FIG. 2: Energy levels and optical transitions involved in reso-
nant parametric generation of entangled photons in graphene.
Left: Landau levels near the Dirac point superimposed on the
linear electron dispersion without the magnetic field. Right:
A scheme of the entangled photon generation process in the
four-level system of LLs with energy quantum numbers n =
-2, -1, 0, 1 that were renamed as states 1,2,3, and 4 for con-
venience of notation.

transitions from n = -1 to 0 and from n = 0 to 1. Note
that these transitions have the same energy. Therefore,
the presence of the unshifted n = 0 Landau level en-
ables convenient entanglement in the polarization degree
of freedom for two photons with nearly equal energies.
All transition frequencies are easily tunable with a mag-
netic field.

The polarizations for the allowed transitions are indi-
cated in Fig. 2. Here LHS and RHS denote left-hand
and right-hand circularly polarized light with polariza-
tion vectors in the (x,y) plane of the graphene defined as

e(∓) = (x0 ∓ iy0) /
√

2, respectively. Peculiar selection
rules for graphene, ∆|n| = ±1 as opposed to ∆n = ±1 for
electrons with usual parabolic dispersion, allow the tran-
sition from n = -2 to 1. The dipole matrix elements of
the allowed transitions dmn ∼ ~eυF /(εn − εm) grow fast
(∼ λ) with increasing wavelength, and reach a large mag-
nitude in the mid/far-infrared range; e.g. |d12|/e = 13
nm for B = 1 T (λ = 34 µm). This enables an extremely
high resonant third-order nonlinearity [11]. Note also
that the states n = -1, 0, and 1 have low population
when the intensities of the optical pumps are below satu-
ration and ~ωc � kBT . These factors lead to a high rate
of photon generation and high signal to noise ratio.

In order to determine the optimal conditions for entan-
glement and the photon generation rate, we solve cou-
pled equations for Heisenberg operators of the electron
and signal photon fields, assuming that the strong pump
fields are classical. Consider quasiparticles (”electrons”)
on Landau levels described by stationary states |m〉 and
energy levels εm. After introducing creation and annihi-
lation operators of an electron, â†m|0〉 = |m〉, ân|n〉 = |0〉,
one can define a coordinate-dependent density matrix op-

erator, ρ̂mn(r, t) = 1
∆Vr

∑
j â
†
j;n(t)âj;m(t), where the in-

dex j numerates individual electrons and the summation
is carried over all electrons within a small volume ∆Vr
in the vicinity of a point with radius-vector r. Assuming
that the operators in different points of space commute
with each other, the commutation relations become

[ρ̂qp(r), ρ̂mn(r′)] = δ(r−r′)(ρ̂mp(r)δqn−δmpρ̂qn(r)). (1)

Using the above density operator, one can write the
Heisenberg operator of any physical quantity x(r, t) as
x̂ =

∑
n,m xnmρ̂mn(r, t). In particular, the optical polar-

ization is given by P̂(r, t) =
∑
n,m dnmρ̂mn.

The Heisenberg-Langevin equation for the density op-
erator takes the form

˙̂ρmn = − i
~

(
ĥmvρ̂vn − ρ̂mvĥvn

)
+R̂mn(ρ̂mn)+F̂mn, (2)

independently on whether âm, â
†
n operators obey the

commutation relations for fermions or bosons.
In Eq. (2) ĥnm = εnδnm − dnmÊ(r, t) is the matrix

element of the Hamiltonian operator Ĥ = ĥnmâ
†
nâm de-

scribing interaction with the electric field Ê(r, t) in the

dipole approximation and R̂mn the relaxation operator,
for which we will choose the simplest form R̂m 6=n =

−γmnρmn. The Langevin noise operator F̂mn satisfies
F̂mn = F̂ †nm and 〈F̂mn〉 = 0. Here the averaging 〈...〉 is
taken both over the reservoir and over the initial state
|ΨE〉 of the electron system. The commutators and cor-

relators for F̂mn are derived in the Supplement.
For a monochromatic electric field of a given field mode

propagating in a dispersive medium with dielectric con-

stant ε(ω), Ê = Ê0e
−iωt+ikz + Ê

†
0e
−iωt+ikz, one can de-

fine the operators of annihilation and creation of ”pho-

tons in a medium” ĉ0 and ĉ†0 [16] as Ê0 = eE0ĉ0, Ê
†
0 =

e∗E0ĉ
†
0. Here e is a unit vector of the polarization

of the field and E0 =

√
4π~ω2/

∂(ω2ε(ω))

∂ω
is the nor-

malization constant. With this normalization of the
field operators the energy of the field in a volume V

is given by Ŵ = ~ω
(
V ĉ†0ĉ0 + 1

2

)
and their commu-

tation relation reads [ĉ0, ĉ
†
0] = 1

V . If the field ampli-
tude varies in time and space over the scales T and L
much larger than the period, T � 2π/ω, and wave-
length, L � 2π/k, one can always choose the volume
of quantization L3 � V � (2π/k)3 and introduce space-
and time-dependent creation and annihilation operators

ĉ0(r, t) and ĉ†0(r, t) [16], which determine the photon den-

sity operator n̂ph = ĉ†0(r, t)ĉ0(r, t).
Of course, there is no need to consider ”propagation” of

the fields through a monolayer of graphene. However, we
will keep our formalism general to make it applicable to
a multilayer graphene layer which shows similar physics
near the H-point; see the discussion below. The 2D film
limit can be retrieved from general expressions by taking
the limit of an infinitely small layer thickness.
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A more realistic field consists of a certain number of
modes propagating within a paraxial beam of a cross-
sectional area S⊥. If we keep the same notation ĉ0 for
the field operators describing the field amplitude in the

whole beam, their commutator becomes [ĉ0, ĉ
†
0] = ∆j/V

where ∆j is the number of modes. The total flux
density of photons in a state |ΨF 〉 is then given by

Q = υgrS⊥〈ΨF |ĉ†0ĉ0|ΨF 〉, where υgr =
2c2k

∂(ω2ε(ω))/∂ω
is a group velocity. It is convenient to go from a dis-
crete set of modes to a continuous spectral interval
∆ω � ω. The density of states in a volume V is equal to
η = V k2/8π3υgr and the wave vectors of the modes con-
stituting a beam occupy the solid angle ∆o ≈ 4π2/k2S⊥.
One can always choose a volume V which is small on
the scale of spatial variation of the operator ĉ0(r, t), but
which still includes many wavelengths of light. As a re-
sult, we arrive at the commutation relations for the op-
erator of the field amplitude and its spectral harmonics
that are specified in Eqs. (14-16) of the Supplement.

The equation of motion for the field amplitude opera-
tor of each of the two signal fields can be derived from
the Heisenberg equation for the operators of the field and
electric polarization (see page 3 of the Supplement):(

∂

∂t
+ υgr

∂

∂z

)
ĉ0 =

4πiω2

E0∂(ω2n2)/∂ω
P̂0e

∗ (3)

Equation (3) includes all the relevant effects: linear
dispersion determines the group velocity of the wave,
whereas the slowly varying polarization amplitude P̂0

on the right-hand side includes nonlinearity, dissipa-
tion, and fluctuations. At the boundary zb between the
medium and the vacuum, the boundary condition for the
field operator takes the form (neglecting back reflection)

ĉ0(zb)|vacuum =
√

υgr
c ĉ0(zb)|medium, which satisfies the

conservation of the Poynting flux. Eqs. (2) are to be
solved together with Eq. (3) for both signal fields in or-
der to determine the generated signal and noise.

In the four-wave mixing process depicted in Fig. 2, the
total field consists of the four waves: two strong classi-
cal pump fields at high and low frequencies resonant to
the corresponding transitions between the Landau levels,
ωHF = ω41 and ωLF = ω21, and two signal fields that
are described by operators,

Ê(+,−) = e(+,−)E0ĉ(+,−)e
−iω(+,−)t+ik(+,−)z + h.c. (4)

The signal frequencies may have a detuning, ω(+,−) =
ω43,32 ∓∆,∆� ω+,− satisfying the frequency-matching
condition ωHF = ωLF + ω(+) + ω(−). We also assumed
that ω(+) ' ω(−) = 〈ω〉 in the normalization constant
E0.

The density-matrix equations (2) for our four-level sys-
tem are given in the Supplement (Eq. (22)). Solving them
in the steady state and in linear approximation with re-
spect to weak signal fields, we find that optimal condi-
tions for the entanglement are realized when the Fermi

level is close to the state |1〉 (n = -2) and the popula-
tions of all states above are low. This is possible when
the magnetic field is strong enough, kBT � ~ωc, and
Rabi frequencies of the pump fields are below satura-
tion: |ΩHF,LF | � 〈γ〉. Here the Rabi frequencies are

defined as ΩHF =
d∗14EHF

~
, ΩLF =

d∗12ELF
~

, and we as-

sume for simplicity that all scattering rates γmn are of
the same value 〈γ〉. The latter assumption can be eas-
ily dropped once the relaxation rates are known for any
particular sample. If, in addition, the detuning is suf-
ficiently large, 〈γ〉 � ∆, the only place in Eqs. (22) in
the Supplement where we have to take into account non-
zero populations of the excited states are the Langevin
noise terms F̂(+,−) ≡ F̂43,32. Solving the density-matrix
equations in the steady state and neglecting the terms of
the order of (〈γ〉/∆)2, we arrive at the following expres-
sion for the operator of the polarization amplitude at the
frequency of the signal fields:

P̂(+,−) ≈ e(+,−)

(
χÊ†(−,+) ∓ id(+,−)F̂(+.−)/∆

)
(5)

where

χ =
Nd(+)d(−)

~∆

(γ21 + γ41)ΩHFΩ∗LF
γ21γ41γ42

∼ Nd2

~∆

Ω2
p

〈γ〉2
(6)

and we denoted Ω2
p = ΩHFΩ∗LF , d(+,−) = d43,32, d =

~eυF /ω32, and N = 〈ΨE |ρ̂11|ΨE〉.
Using the polarization (5)) as a source in Eqs. (3), we

obtain the following coupled equations for the signal field
operators:(

∂

∂z
+

1

υgr

∂

∂t

)
ĉ(+) = iκĉ†(−) + Ĝ(+)(

∂

∂z
+

1

υgr

∂

∂t

)
ĉ†(−) = −iκ∗ĉ(+) + Ĝ†(−)

, (7)

where the coefficient of the parametric coupling is κ =

2πχ
〈ω〉2

c2〈k〉
and the noise term

Ĝ(+,−) = ∓2πi
〈ω〉2

c2〈k〉
d(+,−)F̂(+,−)

E0∆
. (8)

Here we again neglected a small difference between the
central frequencies of the signal fields in the pre-factors,
assuming ω(+) = ω(−) = 〈ω〉 and 〈k〉 = 〈ω〉/c.

In the optimal limit of |Ωp| � 〈γ〉 � |∆|, the noise
terms and the Raman scattering of the pump fields into
the signal modes can be neglected and the solution for the
fields exiting a layer of thickness L takes a particularly
simple and transparent form:

ĉ(+)(L, t) = cosh(τ)ĉ(+) (0, t− L/υgr)

− ieiθ sinh(τ)ĉ†(−) (0, t− L/υgr) , (9)

and similarly for ĉ(−)(L, t) after exchanging (+) and (-)
subscripts. Here the parametric gain factor τ = |κ|L and
κ = |κ|eiθ.
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Eqs. (9) clearly show the emergence of quantum cor-
relations between the signal photons with opposite cir-
cular polarizations. In particular, consider the boundary
condition at z = 0 corresponding to a completely uncor-
related state of vacuum fluctuations within the spectral
bandwidth ∆ω. Then one can obtain from Eq. (9) that
the photon fluxes in two signal fields exiting the layer at
z = L are completely correlated:

〈0|Q̂(+)(L)|0〉 = 〈|Q̂(−)(L)|0〉 =
∆ω

2π
sinh2 τ,

〈0|
(
Q̂(+)(L)− Q̂(−)(L)

)2

|0〉 = 0
(10)

Here Q̂(+,−)(L) = cS⊥ĉ
†
(+,−)(L)ĉ(+,−)(L) are operators

of the photon fluxes. The correlated (+) and (-) photons
can then be used to prepare the desired polarization-
entangled states. The second equation in (10) corre-
sponds to the Manley-Rowe relations for the parametric
process. It also follows from Eq. (9) that the scheme
could be used to amplify the light with a nonclassical
statistics or exchange the statistical properties between
(+) and (-) photons. The magnitude of ∆ω is likely to
be limited by the bandwidth of a detection system.

The Schroedinger’s quantum state of entangled pho-
tons at the exit z = L from the graphene layer can be
calculated in the limit of small parametric gain τ � 1
by comparing the average electric field squared calcu-
lated using Schroedinger’s wave function and using our
Heisenberg’s solution Eq. (9); see Sec. IV A of the Sup-
plement. The resulting wave function clearly describes an
entangled state: Ψ(L) = |0(+)〉|0(−)〉−ieiθτ |1(+)〉|1(−)〉+
O(τ2). To find the terms of higher order in τ , one has
to calculate the average of higher order moments of the
electric field, as described in the Supplement.

The solution Eq. (9) can be applied to predict the
measurement outcome of any detection scheme sensitive
to quantum correlations, for example the heterodyne de-
tection scheme described in [19]. As shown in Sec. IV B
of the Supplement, using Eq. (9) in calculating the aver-
age power of a heterodyned signal leads to an expression
dependent on the phase difference between (+) and (−)
signal photons, which is a signature of entanglement.

If noise terms Ĝ+− in Eq. (7) are taken into account,
the field equations are still straightforward to solve, al-
though the procedure becomes more cumbersome and is
moved to the Supplement. As a result, the photon fluxes
in Eq. (10) acquire additional noise terms:

〈0|Q̂(+)(L)|0〉 ≈ ∆ω

2π

(
sinh2 τ+

γ43

4|κ|∆
Γ(+)(sinh 2τ + 2τ) +

γ32

4|κ|∆
Γ̃(−)(sinh 2τ − 2τ)

)
,

and similarly for 〈0|Q̂(−)(L)|0〉 after exchang-
ing (+) and (-) subscripts. Here the factors
Γ(+,−) = 2π〈ω〉2N4,3|d(+,−)|2/(c2〈k〉~∆) and

Γ̃(+,−) = 2π〈ω〉2N3,2|d(+,−)|2/(c2〈k〉~∆) are of the

order of the parametric coupling term |κ| (see Eq. (28)
in the Supplement); N2,3,4 = 〈ΨE |ρ̂22,33,44|ΨE〉.

From this solution one can see that the noise contri-
bution can be neglected if |∆| � 〈γ〉 provided the para-
metric gain is high enough: τ ≥ 1. For a weak ampli-
fication τ � 1 the condition for a large signal to noise
ratio is more stringent: ∆ � 〈γ〉/τ . If this condition
is not satisfied or if one of the states 2,3,or 4 acquires
a large population, then in the steady state the noise is
always comparable to or greater than the signal. In this
case the entangled photons can be generated only in the
pulsed regime during the time of the order of a few re-
laxation times 1/γ. This is usually the case in resonant
schemes of entanglement in atomic vapors [17, 18].

The above analytic results were derived in the limit
of |Ωp| � 〈γ〉 � ∆. In the general case the equations
can be solved numerically, including the effects of the
optical pumping of electrons to excited states and opti-
cal saturation. The resulting parametric gain τ per one
monolayer of graphene is plotted in Fig. 3 as a function
of the frequency detuning. As seen from the figure, the
magnitude of τ is around 0.01 for ∆ ∼ 10γ ∼ 100Ωp.
This corresponds to a photon flux of about 10−4∆ω/2π.
To increase the value of τ for a higher rate of the twin
photon generation, one can use a stack of graphene mono-
layers or a thin layer of graphite. Recent studies showed
that a thin graphite layer maintains high carrier mobil-
ity and monolayer-like Landau levels ∝

√
|n|B near the

H-point of the Brillouin zone [13, 14], that are detectable
in absorption up to 0.5 eV from the Dirac point.
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FIG. 3: Parametric gain τ per monolayer of graphene as a
function of normalized detuning of the signal fields ∆/〈γ〉 for
the pump field intensity |Ωp|2 = 0.1〈γ〉2.

Similar mechanism of entanglement could exist in
topological insulators where the surface states have a
massless dispersion and demonstrate a similar pattern
of Landau levels [20, 21]. The band velocity υF for sur-
face states in Bi0.91Sb0.09 and Bi2Se3 inferred from mea-
surements in [20, 21] is close to the one in graphene,
which suggests an optical nonlinearity of similar strength.
Bi2Se3 could be a better candidate because of its larger
band gap ∼ 0.3 eV and simpler single-cone band struc-
ture of the surface states. The parametric mechanism
discussed in this paper could be used to control the quan-
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tum state of electrons in surface states.
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