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We propose to observe and manipulate topological edge spins in 1D optical lattice based on
currently available experimental platforms. Coupling the atomic spin states to a laser-induced
periodic Zeeman field, the lattice system can be driven into a symmetry protected topological (SPT)
phase, which belongs to the chiral unitary (AIII) class protected by particle number conservation
and chiral symmetries. In free-fermion case the SPT phase is classified by a Z invariant which
reduces to Z4 with interactions. The zero edge modes of the SPT phase are spin-polarized, with left
and right edge spins polarized to opposite directions and forming a topological spin-qubit (TSQ).
We demonstrate a novel scheme to manipulate the zero modes and realize single spin control in
optical lattice. The manipulation of TSQs has potential applications to quantum computation.

PACS numbers: 37.10.Jk, 71.10.Pm, 42.50.Ex, 71.70.Ej

Introduction.−Since the discovery of the quantum Hall
effect in two-dimensional (2D) electron gas [1], the search
for nontrivial topological states has become an exciting
pursuit in condensed matter physics [2]. The recently
observed time-reversal (TR) invariant topological insu-
lators (TIs) have opened a new chapter in the study of
topological phases (TPs), attracting great efforts in both
theory and experiments [3, 4]. Depending on whether
the ground states have long-range or short-range en-
tanglement, the TPs can be classified into intrinsic or
symmetry-protected topological (SPT) orders [5–7]. Be-
ing protected by the bulk gap, the intrinsic TPs are ro-
bust against any local perturbations, and the SPT phases
are robust against those respecting given symmetries [5–
8]. This property may be applied to the fault-tolerant
quantum computation [9].

While in theory there are numerous types of TPs, the
existing topological orders in nature are rare. The re-
cent great advancement in realizing effective spin-orbit
(SO) interaction in cold atoms [10–15] opens intriguing
new possibilities to probe SO effects [16] and TPs in a
controllable fashion. Theoretical proposals have been in-
troduced in cold atoms for the study of TIs [17–21] and
topological superfluids [22–26]. Experimental studies of
these exotic phases are, however, a delicate issue due to
stringent conditions such as complicated lattice configu-
rations or SO interactions. By far the only experimen-
tally realized SO interaction [11–15] is the equal Rashba-
Dresselhaus-type SO term as theoretically proposed by
Liu etal [10]. Therefore, how to observe nontrivial topo-
logical states with currently available experimental plat-
forms is a central issue in the field of cold atoms [25].

In this letter, we propose to observe and manipulate
topological edge spins in 1D optical lattice with SO inter-

action realizable in recent experiments [11–14]. The pre-
dicted SPT phase belongs to AIII class and is protected
by U(1) and chiral symmetries, with spin-polarized zero
modes forming topological spin-qubits (TSQs). Our re-
sults may open the way to observe topological states of all
ten Altand-Zirnbauer symmetry classes [5] with realistic
cold atom systems, and have broad range of applications
including realizing single spin control in optical lattice.

Model.−Our model is based on quasi-1D cold fermions
trapped in an optical lattice, with the internal three-level
Λ-type configuration coupled to radiation, as shown in
Fig. 1. The transitions |g↑〉, |g↓〉 → |e〉 are driven by the
laser fields with Rabi-frequencies Ω1(x) = Ω0 sin(k0x/2)
and Ω2(x) = Ω0 cos(k0x/2), respectively. In the presence
of a large one-photon detuning |∆| � Ω0 and a small two-
photon detuning |δ| � Ω0 for the transitions [Fig. 1(a)],
the Hamiltonian of the light-atom coupling system reads

H = H0 +H1, with H0 =
∑
σ=↑,↓

[ p2x
2m +Vσ(x)

]
|gσ〉〈gσ|+

~δ|g↓〉〈g↓|, H1 = ~∆|e〉〈e|−~
(
Ω1|e〉〈g↑|+Ω2|e〉〈g↓|+H.c.

)
.

Here the diagonal potentials V↑,↓(x) are used to construct
the 1D optical lattice, and σy,z are the Pauli matrices in
spin space. For |∆| � Ω0, the lasers Ω1,2 induce a two-
photon Raman transition between |g↑〉 and |g↓〉. This
configuration has been used to create the equal-Rashba-
Dresselhaus SO interaction [10–15]. The effect of the
small two-photon detuning is equivalent to a Zeeman field
along z axis Γz = ~δ/2, which in experiment can be pre-
cisely controlled with acoustic-optic modulator. Elim-
inating the excited state by |e〉 ≈ 1

∆ (Ω∗1|g↑〉 + Ω∗2|g↓〉)
yields the effective Hamiltonian

Heff =
p2
x

2m
+
∑
σ=1,2

[
V Latt
σ (x) + Γzσz

]
|gσ〉〈gσ| −

−
[
M(x)|g↑〉〈g↓|+ H.c.

]
, (1)
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FIG. 1: (Color online) (a) Cold fermions trapped in 1D optical
lattice with internal three-level Λ-type configuration coupled
to radiation. (b) Energy spectra with open boundary condi-
tion in the topological (diamond, Γz = 0) and trivial (circle,

Γz = 3ts) phases. The SO coupled hopping t
(0)
so = 0.4ts.

where M(x) = M0 sin(k0x) with M0 =
~Ω2

0

2∆ represents a
transverse Zeeman field induced by the Raman process.

We next derive the tight-binding model. We con-
sider first the s-band model in an optical lattice formed
by the trapping potentials V Latt

↑,↓ (x) = −V0 cos2(k0x),

with the lattice trapping frequency ω = (2V0k
2
0/m)1/2

[27]. From the even-parity of the local s-orbitals φsσ
(σ =↑, ↓), the periodic term M(x) does not couple the

intrasite orbitals φ
(i)
s↑,↓, but leads to a spin-flip hopping by

tijso =
´
dxφ

(i)
s↑ (x)M(x)φ

(j)
s↓ (x) [see Fig. 1(a)], representing

the induced SO interaction. The spin-conserved hopping

reads ts =
´
dxφ

(j)
sσ (x)

[ p2x
2m + V

]
φ

(j+1)
sσ (x). Bearing these

results in mind we write down the effective Hamiltonian
in the tight-binding form: H = −ts

∑
<i,j>,σ ĉ

†
iσ ĉjσ +∑

i Γz(n̂i↑ − n̂i↓)+
[∑

<i,j> t
ij
soĉ
†
i↑ĉj↓ + H.c.], with n̂iσ =

ĉ†iσ ĉiσ. It can be verified that tj,j±1
so = ±(−1)jt

(0)
so ,

where t
(0)
so =

Ω2
0

∆

´
dxφs(x) sin(2k0x)φs(x − a) with a

the lattice constant. Redefining the spin-down operator
ĉj↓ → eiπxj/aĉj↓, we recast the Hamiltonian into

H = −ts
∑
<i,j>

(ĉ†i↑ĉj↑ − ĉ
†
i↓ĉj↓) +

∑
i

Γz(n̂i↑ − n̂i↓) +

+
[∑

j

t(0)
so (ĉ†j↑ĉj+1↓ − ĉ†j↑ĉj−1↓) + H.c.

]
. (2)

The above model can also be realized with p-band
fermions in a different configuration of the optical lat-
tice that V Latt

↑,↓ (x) = −V0 sin2(k0x), which can be directly
verified by noticing the odd-parity of p-orbitals. Remark-
ably, for p-band model the periodic Zeeman term M(x)
and the 1D lattice can be realized simultaneously by set-
ting that Ω1(x) = Ω0 sin(k0x) and Ω2 = Ω0 without
applying additional lasers (see Supplementary Material
[28] for details). This further greatly simplifies the ex-
perimental set-up and we believe that our proposal can
be realized with realistic experimental platforms.

We analyze the symmetry of the Hamiltonian (2). The
TR and charge conjugation operators are respectively de-
fined by T = iKσy with K the complex conjugation,

and C : (ĉσ, ĉ
†
σ) 7−→ (σz)σσ′(ĉ†σ′ , ĉσ′). One can check

that while both T and C are broken in H, the chiral
symmetry, defined as their product, is respected and
(CT )H(CT )−1 = H, with (CT )2 = 1. Note the chiral
symmetry is still preserved if a Zeeman term Γyσy along
y axis is included in H. The complete symmetry group
then reads U(1)×ZT2 , where U(1) gives particle-number
conservation and the anti-unitary group ZT2 is formed
by {I, CT }. The SPT phase of our free-fermion system
belongs to the chiral unitary (AIII) class and is character-
ized by a Z invariant [5–7]. The H can be rewritten in the

k-space H = −
∑
k,σσ′ ĉ

†
k,σ[dz(k)σz + dy(k)σy]σ,σ′ ĉk,σ′ ,

with dy = 2t
(0)
so sin(ka) and dz = −Γz + 2ts cos(ka). This

Hamiltonian describes a nontrivial topological insulator
for |Γz| < 2ts and otherwise a trivial insulator, with the

bulk gap Eg = min{|2ts − |Γz||, 2|t(0)
so |} (Fig. 1 (b)). In

particular, when Γy,z = 0 and ts = |t(0)
so |, our model gives

rise to a flat band with nontrivial topology.
Edge states.−The nontrivial topology can support de-

generate boundary modes. Considering hard wall bound-
aries located at x = 0, L, respectively [29] and diag-
onalizing H in position space H =

∑
xi
H(xi) with

H(xi) = −(tsσz+ it
(0)
so σy)ĉ†xi ĉxi+a+Γzσz ĉ

†
xi ĉxi +h.c., we

obtain the edge state localized on left boundary x = 0 as

ψL(xi) =
1√
N

[(λ+)xi/a − (λ−)xi/a]|χ+〉, (3)

and accordingly the one on x = L by ψR(xi) =
1√
N [(λ+)(L−xi)/a−(λ−)(L−xi)/a]|χ−〉. Here N is the nor-

malization factor, the spin eigensates σx|χ±〉 = ±|χ±〉,

and λ± = (Γz ±
√

Γ2
z − 4t2s + 4|t(0)

so |2)/(2ts + 2|t(0)
so |).

Therefore the two edge modes are polarized to the op-
posite ±x directions. Note ψL and ψR span the com-
plete Hilbert space of one single 1/2-spin or spin-qubit.
Each edge state equals one-half of a single spin, similar to
the relation between a Majorana fermion and a complex
fermion in topological superconductors. As a result, we
expect the robustness of the zero modes to any local op-
erations without breaking the U(1) and CT symmetries
[30]. These properties of the TSQ may be applicable to
fault-tolerant quantum computation [9]. Moreover, the
Z classification implies that single-particle couplings re-
specting U(1) and CT cannot gap out the edge modes
in arbitrary N -chain system of 1D lattices. Interestingly,
however, we have confirmed that with weak interactions
a system with up to four chains of the 1D lattices can be
adiabatically connected to a trivial phase without closing
the bulk gap, implying that the Z classification breaks
down to Z4 with interactions [28]. This result suggests
an interesting platform to study the classification of SPT
phases with cold atoms.

Existence of zero modes leads to particle fractionaliza-
tion, which is another direct observable in experiment.
A zero mode is contributed half from the valence band
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FIG. 2: (Color online) (a) Wave functions for zero modes
|ψL,R〉; (b) 1/2-particle fractionalization (seen by ∆N1,2) for

zero modes. The parameters t
(0)
so = 0.4ts and Γz = 0.3ts, with

which the localization length of bound modes ξ0=2.36a.

and half from the conduction band. Therefore, an edge
state carries +1/2 (−1/2) particle if it is occupied (unoc-
cupied) [28]. This result is confirmed by numerical sim-
ulation shown in Fig. 2, where we calculate ∆N1,2(xi) =´ xi

0
dx′N1,2(x′) − xi/a at half-filling, with N1(2)(x) the

density of fermions when the left (right) edge mode is
filled. The fermion number carried by an occupied (un-
occupied) edge mode is then given by n1(2) = ∆N1(2)(ξ)
with ξ � ξ0. Here ξ0 = −a/ ln |λ+| is the localization
length of ψL,R. The 1/2-fractionalization is clearly seen
when ξ is several times greater than ξ0 (Fig. 2 (b)). Being
a topological invariant, the 1/2-fractionalization can be
confirmed to be robust against weak disorder scatterings
without breaking the given symmetries.

Correlation effects.−A particular advantage in cold
atoms is that one can investigate correlation effects
on the predicted SPT phase by precisely controlling
the interaction. For spin-1/2 cold fermions the on-
site Hubbard interaction U

∑
i ni↑ni↓ can be well con-

trolled by Feshbach resonance [27]. For a single-chain
system, we expect that the topological phase is stable
against weak interactions relative to the single-particle
bulk gap, while the strong repulsive interaction can al-
ways drive the system into a Mott insulating phase.
The correlation effects around the critical point can
be probed by Abelian bosonization approach combined
with renormalization group (RG) analysis [31]. Note
in the non-interacting regime, the phase diagram of
the single-chain system is determined by the SO and
Zeeman terms which define two mass terms HSO =
u
πa sin

√
2φρ cos

√
2θσ,HZ = w

πa cos
√

2φρ sin
√

2θσ in the

bosonized Hamiltonian, where the masses u = 2t
(0)
so ,

w = Γy, and φρ,σ, θρ,σ are boson representation of the
fermion fields [28]. The fate of the system in the pres-
ence of the interaction depends on which mass term flows
first to the strong coupling regime under RG.

A direct power counting shows the same RG flow
for the masses u and w in the first-order perturbation.
Therefore the next-order perturbation expansion is neces-
sary to capture correctly the fate of the topological phase
transition. By deriving the RG flow equations up to one-
loop order [32], we find the renormalization to u,w, the

umklapp scattering gρ and spin backscattering gσ by [28]:

du

dl
=

3−Kρ

2
u− gρu

4πvF
+

gσu

4πvF
,

dw

dl
=

3−Kρ

2
w +

gρw

4πvF
+

gσw

4πvF
,

dgρ
dl

=
g2
ρ

πvF
,

dgσ
dl

=
g2
σ

πvF
,

(4)

where the bare values of the coupling constants gρ =

−gσ = U, u = 2t
(0)
so , w = Γy, and l is the logarithm of

the length scale. The renormalization of Luttinger pa-
rameter Kρ has been neglected as it is a higher order
correction. For U > 0, gσ marginally flows to zero so
we drop it off below. This is consistent with the re-
sult that repulsive interaction cannot gap out the spin
sector in the 1D Hubbard model. gρ is marginally rele-

vant and can be solved by gρ(l) =
πvF gρ(0)
πvF−gρ(0)l . Substitut-

ing this result into RG equations of u and w yields af-

ter integration u(l) = u(0)[1 − gρ(0)l
πvF

]
1
4 e(3−Kρ)l/2, w(l) =

w(0)[1 +
gρ(0)l
πvF

]
1
4 e(3−Kρ)l/2. The physics is clear: the re-

pulsive interaction (gρ > 0) suppresses SO induced mass
term u while enhances the trivial mass term w. The fate
of the system depends on which of u and w reaches the
strong-coupling regime first. Assuming |gρ(0)l| � vF , we
find the TP transition occurs at

u(0) =
[
w(0)

]γ
, γ ≈ 1− gρ(0)

4πvF (3−Kρ)
. (5)

This gives the scaling law at the phase boundary with
interaction. Note γ < 1 for U > 0. The above scaling re-
lation implies that a repulsive interaction suppresses the
SPT phase. Accordingly, if initially the noninteracting
system is topologically nontrivial with u(0) > w(0) > 0,
increasing U to the regime u(0) < [w(0)]γ drives the sys-
tem into a trivial phase.

Single spin control.−Now we study an interesting ap-
plication of the present results to realizing single spin
control. Besides the edge modes localized on the ends,
TSQs can also be obtained in the middle areas by cre-
ating mass domains in the lattice. This can be achieved
by applying a local Zeeman term Γy or Γz. For exam-
ple, we consider Γz = 0 everywhere, but Γy = Γ0 for
x1 < x < x2 and Γy = 0 otherwise. The local Γy can
be generated by applying another two lasers which cross
with the 1D lattice and couple the atoms in the area
x1 < x < x2 to induce a local resonant Raman coupling
between |g↑〉 and |g↓〉 (Fig. 3(a)). Employing a π/2-phase
offset in the Rabi-frequencies of the two lasers, the Ra-
man coupling takes the form Γ0σy, with Γ0 controlled

by the laser strength. When |Γ0| > 2|t(0)
so | a mass do-

main is created, associated with two midgap spin states
|ψ±〉 respectively localized around x = x1,2 (Fig. 3(a)).
The width ∆x = x2 − x1 and height of the domain are
respectively adjusted by the waist size and strength of
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the two laser beams. Due to the nonlocality of the TSQ,
creation of a single qubit here is not restricted by the
size of the laser beams. This is a fundamental differ-
ence from creating conventional single qubit by optical
dipole trapping which requires tiny-sized laser beams to
reach a very small trapping volume [33]. Note in realistic
case the laser induced Γy may vary fast but not in the
form of step functions around x = x1,2, which, however,
does not affect the main results presented here [28]. Cou-
pling between |ψ+〉 and |ψ−〉 results in an energy split-

ting 2E ∝ e−(|Γ0|−2|t(0)so |)∆x/(2ats), which is controlled by
Γ0 and ∆x (Fig. 3(a), lower panel). In the limit (|Γ0| −
2|t(0)

so |)∆x/(2ats) � 1, such coupling is negligible, and
the two zero modes consist of a single spin qubit which is
topologically stable. Let |ψ+〉 be initially occupied while
|ψ−〉 be left vacancy. Reducing |Γ0| smoothly can open
the coupling in |ψ±〉 and lead to spin state evolving as
[34] |ψ(t)〉 = α(t)ϕ−(x− x1)|χ−〉+ β(t)ϕ+(x− x2)|χ+〉,
with α(0) = 0, β(0) = 1, and ϕ± the spatial parts of the
bound state wave-functions. The spin-polarization den-
sities are given by sx,y,z(x, t) = 〈ψ(x)|σx,y,z|ψ(x)〉, and
the spin expectation values Sx,y,z(t) =

´
dxsx,y,z(x, t).

It can be verified that Sy(t) = 0, and

Sx(t) = |α(t)|2 − |β(t)|2,

Sz(t) = 2Re
[
α(t)β∗(t)

ˆ
dxϕ∗+(x)ϕ−(x)

]
.

(6)

This phenomenon is analogous to spin precession with the
rotating angle yielding γ(t) = 2

´ t
0
dt′E(t′). We have then

α = cos γ(t) and β = sin γ(t). The amplitude of Sz(t)
is given by Smax

z = |
´
dxϕ∗+(x)ϕ−(x)|, which measures

the overlapping integral of ϕ±. Accordingly, if we ap-
ply the local Zeeman field along z rather than y axis, we
shall obtain that the spin evolves in the x-y plane. Note
the spin Rabi-oscillation is induced by quantum tunnel-
ing. Therefore it is associated with a tunneling current
given by Jm(t) = −∆xE

2π~ ∂t|α(t)|2 between x1 and x2. In
experiment the internal states of a single atom can be de-
tected without energy transfer [35], which is applicable
to observe the spin Rabi-oscillations, while the oscillation
of Sx(t) can be more conveniently observed by measur-
ing the number of fermions 〈n±(t)〉 localized around x1,2

with single-site resolution technology [36], and Jm(t) can
be detected by measuring the change rate with time of
such fermion numbers.

We show in Fig. 3 (b-d) the numerical simulation
for single spin control with the parameter regime that

ts = 3.15kHz, t
(0)
so = 0.4ts, and ∆x = 10a. For t < 0,

Γ0 = 8t
(0)
so and the coupling in |ψ±〉 is negligible. Re-

ducing Γ0 at t > 0 leads to spin evolution and by fixing

Γ0 = 2.5t
(0)
so for t > t1 the spin oscillates with a period of

5.984ms (b-c). Note the quantum state of the spin can be
precisely controlled by properly manipulating γ(t). For
example, in Fig. 3 (d) we demonstrate the spin-flip op-
eration |χ+〉 → |χ−〉 by requiring γ(t3) = (2m + 1)π.

FIG. 3: (Color online) Spin Rabi-oscillations with the param-

eters ts = 3.15kHz, t
(0)
so = 0.4ts, and ∆x = 10a ∼ 4µm. (a)

Mass domain created by setting |Γ0| > 2t
(0)
so for x1 < x < x2

which localizes a spin-qubit composed of two bound modes
|ψ±〉 on x = x1, x2, respectively; (b) Spin Rabi-oscillation by

smoothly reducing |Γ0| from 8t
(0)
so to 2.5t

(0)
so ; (c) The mass cur-

rent Jm(t) and expectation values of particle numbers 〈n±(t)〉
in states |ψ±〉; (d) Spin-flip operation by controlling that
γ(t3) = (2m + 1)π with m = 1. The initial spin state |χ+〉
(Points A) flips to be |χ−〉 (Points B).

Here m ∈ Z and in (d) we take m = 1. Note one may
integrate multiple TSQs with e.g. atom-chip technology
and individually control them by creating multiple mass
domains in the 1D lattice. The precise manipulation of
such integrated TSQs may have interesting applications
in developing scalable spin-based quantum computers.

Before conclusion we estimate the parameter values
for realistic experimental observations. For example, in
40K atoms we have the recoil energy ER/~ = ~k2

0/2m =
48kHz using red-detuned lasers of wavelength 773nm to
form the optical lattice. Taking that V0 = 5ER and
M0 = 2ER, we have that the lattice trapping frequency
ω = 214kHz, and hopping coefficients ts/~ ' 3.15kHz

and t
(0)
so /~ ' 1.3kHz. Then the bulk gap equals Eg/~ =

2.6kHz for Γz = 0, indicating a temperature T = 19nK
for the experimental observation. Also, under this pa-
rameter regime the life time of the atoms is over 1.0s,
which is long enough for the detection and manipulation
of the topological edge spins.

Conclusions.−We have proposed to observe and ma-
nipulate SPT phase of AIII class in 1D optical lattice,
and demonstrated single spin control by manipulating
spin-polarized zero modes which is applicable to spin-
based quantum computation. The minimum requirement
for the proposed scheme is a regular 1D lattice and a
transverse Zeeman field, which can be realized simulta-
neously in a single two-photon Raman transition as used
in the recent experiments [11–15]. The present study may
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open the search for topological states of all ten Altand-
Zirnbauer symmetry classes with realistic cold atom sys-
tems, and its remarkable feasibility will attract both the-
oretical and experimental efforts in future.
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