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Recent theory has indicated how to emulate tunable models of quantum magnetism with ultracold
polar molecules. Here we show that present molecule optical lattice experiments can accomplish
three crucial goals for quantum emulation, despite currently being well below unit filling and not
quantum degenerate. The first is to verify and benchmark the models proposed to describe these
systems. The second is to prepare correlated and possibly useful states in well-understood regimes.
The third is to explore many-body physics inaccessible to existing theoretical techniques. Our pro-
posal relies on a non-equilibrium protocol that can be viewed either as Ramsey spectroscopy or an
interaction quench. The proposal uses only routine experimental tools available in any ultracold
molecule experiment. To obtain a global understanding of the behavior, we treat short times per-
tubatively, develop analytic techniques to treat the Ising interaction limit, and apply t-DMRG to
disordered systems with long range interactions.

PACS numbers: 67.85.-d,75.10.Jm,71.10.Fd,33.80.-b

Excitement about the recent achievement of near-
degenerate ultracold polar molecules [1–5] in optical lat-
tices [6] stems from their strong dipolar interactions
and rich internal structure, including rotational, vibra-
tional, and hyperfine states. These features may be
applied to tests of fundamental constants [7], quan-
tum information [8], ultracold chemistry [9], and quan-
tum emulation of condensed matter models [10–12]. In
this paper our focus is on molecules as emulators of
quantum magnetism [13–25], specifically as proposed in
Refs. [26, 27]. Models of quantum magnetism have some
of the simplest many-body Hamiltonians, yet describe
numerous materials [28–30] and display condensed mat-
ter phases ranging from fundamental to exotic: anti-
ferromagnets, valence bond solids, symmetry protected
topological phases, and spin liquids. Emulating quan-
tum magnetism with molecules is appealing because, like
cold atoms, the systems are clean and the microscop-
ics well understood. Advantages over cold atom em-
ulations of quantum magnetism [31] include orders of
magnitude larger energy scales and more tunable Hamil-
tonians [26, 27]. These prior studies have focused on
spin ground states of unit filling insulators. In contrast,
we propose a simple dynamic procedure applicable to
present experiments (Fig. 1, elaborated later), which are
ultracold, but non-degenerate and low density. We show
that interesting many body quantum magnetism can be
studied immediately.

Specifically we show how experiments may use this
dynamics to achieve major goals for emulating quan-
tum magnetism, and we outline these goals to motivate
our calculations. First, although interesting models of
quantum magnetism are predicted to describe ultracold
molecules under appropriate circumstances, this has yet
to be experimentally demonstrated. The proposed dy-
namic protocol allows such a demonstration as well as
benchmarking of the emulator’s accuracy. Second, one
wishes to prepare interesting correlated — and possibly
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FIG. 1. (Color online) Dynamic protocol viewed as Ramsey
spectroscopy, two microwave pulses of area θ and θ′ separated
by time t. Inset: alternative view as an interaction quench, a
t = 0 sudden turn-off of an infinite strength field hθ along θ.

useful — states. This protocol can generate such states
in well-understood regimes. Finally, one wants to ex-
plore behavior in these models in regimes inaccessible to
present theoretical tools. This is the generic case for the
proposed dynamics. We emphasize that all of these goals
are achievable under existing experimental conditions [6],
despite present experiments being non-quantum degen-
erate and at low density. Furthermore, they require only
routinely used measurement and preparation tools [32].
Background.—Refs. [26, 27] show how molecule rota-

tional states can serve as effective spins, and that dipolar
interactions provide an effective spin-spin interaction. In
the simplest case, one populates two rotational levels in a
dc electric field E [33] and works in a deep lattice to allow
no tunneling. In this limit, a spin-1/2 dipolar quantum
XXZ model describes the molecules [34]:
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The sum runs over all molecules, Szi and S±i are the spin-
1/2 operators satisfying [Szi , S

±
i ] = ±S±i , and Vdd(i, j) =

(1− 3 cos2 Θij)/|ri − rj |3 with ri the i’th molecule’s po-
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sition in lattice units and Θij the angle between E and
ri − rj . For simplicity and concreteness we assume a
dimension d ≤ 2 system with E perpendicular to it,
so Vdd(i, j) = 1/|ri − rj |3, but our ideas apply in ar-
bitrary geometries. One may tune J⊥/Jz by changing
E and the choice of rotational state. We denote by
|0〉, |1〉, and |2〉 the three lowest energy rotational eigen-
states in the applied E-field with zero angular momen-
tum along the quantization axis. Choosing |0〉 and |1〉
to make the spin-1/2, one can tune ∞ > J⊥/Jz > 0.35
using (readily achievable) E-fields from 0 to 16 kV/cm.
Choosing |0〉 and |2〉 for the spin-1/2, one can tune
0 < J⊥/Jz < 0.1 for similar E-fields. Fig. 2 shows the
couplings’ E-field dependence for these rotational level
choices in both natural units (dp = permanent dipole
moment and B = rotational constant) and real units for
KRb in a 532 nm lattice. A characteristic scale for these
couplings is 400 Hz in KRb and 40 kHz in LiCs [35], com-
pared to ∼<10Hz in cold atoms using superexchange [36]
(we set ~ = 1). KRb molecules recently have been loaded
in a deep three-dimensional lattice with 25 s lifetimes [6],
allowing dynamics lasting thousands of J−1

⊥ and J−1
z .

One important aspect of the ongoing experiments is
that the filling f is much less than one molecule per site.
The JILA experiments estimate f ∼ 0.1 [37]. As a result,
although molecules’ positions are static through one shot,
they fluctuate shot-to-shot. Thus, rather than forming a
regular lattice, spins’ locations have significant disorder.

We use a simple disorder model that likely describes
current experiments. We assume that each site is occu-
pied with a probability p that is independent of other
sites [38]. If the molecules are fermions (e.g., KRb [6])
then for current temperatures, which occupy only the
lowest band, no sites can be doubly occupied and p = f .
This also applies to bosons with a strong on-site density-
density interaction (e.g., RbCs [39]). The trap causes f
to vary spatially. Although we show results only for the
homogeneous system, we have taken the trap into ac-
count and found that our conclusions remain valid [40].
Remarkably, relatives of such unusual models exist, and
are employed to understand materials, 3He-4He mixtures,
and disorder-induced phenomena [41–49].

Disorder is related to temperature, but one must dis-
tinguish motional temperature from spin temperature.
Only through “disorder” does motional temperature en-
ter, because the deep lattice freezes out the motion. Even
if motional temperature is large it is entirely captured by
the disorder. Experimental microwave manipulation can
produce essentially zero entropy non-thermal spin states.
While one could worry that disorder washes out the be-
havior, we will show that strong correlations, entangle-
ment, and interesting many body physics survive large
amounts of disorder.

Dynamic protocol.—Our dynamic procedure may be
alternatively viewed as Ramsey spectroscopy or an in-
teraction quench (Fig. 1). Ref. [50] studied closely re-
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FIG. 2. (Color online) Left: DC electric field dependence
of coupling constants J⊥ (blue) and Jz (purple) for {|0〉 , |1〉}
(solid) and {|0〉 , |2〉} (dashed) rotational level choices to rep-
resent the spin-1/2. Top to bottom, at E = 0, these are J1

⊥,
J1
z , J2

z , J2
⊥ where superscript 1 and 2 denote the first and

second choice of states, respectively. Units for KRb are in a
532 nm lattice. Right: rescaled short time coefficient A/f2,
defined by 〈Sxi (t)〉 = 〈Sxi (0)〉 −Aτ2 +O(t4), for a one dimen-
sional dipolar chain, for fillings f = 0, 0.2, . . . , 1.0, bottom to
top, with τ ≡ (Jz − J⊥)t. Results are from Eqs. (2).

lated Rabi spectroscopy. In Ramsey spectroscopy, a well
established tool in atomic physics, one begins with all
molecules in the rotational ground state and applies two
strong, resonant microwave pulses separated by time t.
The first pulse initializes the spin states along θ, specif-
ically to cos(θ/2)eiϕ/2 |↓〉+ sin(θ/2)e−iϕ/2 |↑〉, for an an-
gle θ set by the pulse area, with high fidelity (> 99%).
We take ϕ = 0 with no loss of generality. The sec-
ond pulse rotates a desired spin component, chosen by
the pulse area and phase, to the z axis. In this way
one can measure any desired collective spin component
〈n̂ · S〉, where n̂ is a unit vector and Sα =

∑
i S

α
i with

α ∈ {x, y, z}. One can also obtain higher moment cor-
relations, e.g. 〈(n̂ · S)2〉, from the measurement record.
Between these pulses the spins evolve for a time t under
the Hamiltonian in Eq. (1). We note that molecule exper-
iments have recently begun using this protocol [32] and
Ref. [51] applied it to long-range Ising models in recent
Penning trap experiments with ∼ 300 ions.

If one imagines adding a transverse field hS · n̂θ to
Eq. (1)’s Hamiltonian, with n̂θ a unit vector pointing θ
from the −z axis (see Fig. 1), the Ramsey protocol corre-
sponds to a quench from h =∞ to h = 0. One may there-
fore be able to explore, e.g., Kibble-Zurek physics [52, 53].

Theoretical methods.—We calculate dynamics in four
limits: (1) short times, {J⊥, Jz}t� 1, (2) Ising, J⊥ = 0,
(3) near-Heisenberg [SU(2)], |Jz − J⊥| � Jz, and (4)
one dimension for arbitrary J⊥/Jz. We develop analytic
tools in arbitrary dimension for limits (1-3) and study
(4) with the numerically exact adaptive time-dependent
density matrix renormalization group (t-DMRG) [54–57].
All are obtained by time-evolving under Eq. (1)’s H, cor-
responding to the middle leg of the Ramsey spectroscopy.
We will present calculational details elsewhere [40]. In all
cases

〈
Szj
〉

= −(f/2) cos θ is conserved.

Short time limit, {J⊥, Jz}t � 1. For short times,
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FIG. 3. (Color online) “Phase diagram” illustrating
crossovers of dynamics versus filling f , J⊥/Jz, and θ using
t-DMRG on chains. In each region, a plot shows dynamics
for θ = 0.1π, 0.5π (top blue, bottom purple), labeled with a
qualitative description. Shaded regions for f = 0.2 indicate
one standard deviation from disorder averaging 100 configura-
tions. The partial curves at short times are obtained from our
perturbative expansions, Eqs. (2). “KRb: 14 ms” indicates
the time for KRb in a 5 kV/cm dc E-field, using |0〉 and |1〉
as the spin-1/2 (see Fig. 2). Dynamics in higher dimensions
is faster due to having more neighbors.

〈O(t)〉 = 〈O〉 − it 〈[O, H]〉 − t2

2 〈[[O, H], H]〉 + O(t3) for
an observable O. We calculate the commutators and
time dependence of 〈Sα(t)〉 to leading non-zero order,
and 〈Sα(t)Sγ(t)〉 to linear order. We find

〈Sxi 〉 =
f

2
sin θ

{
1− fτ2

8

[
Ξ2 + fΥ cos2 θ

]}
+O(τ4),

〈Syi 〉 = −(f2τΞ1/8) sin(2θ) +O(τ3), (2)

where τ = (Jz − J⊥)t, Ξm =
∑
j 6=0 V

m
dd(i, i + j), and

Υ = Ξ2
1 −Ξ2. Note that for these homogeneous systems,

these observables are independent of i. Similarly, defining
Cαγij ≡

〈
Sαi S

γ
j

〉
, we find

Cxyij =
τf3 sin(2θ) sin θ

16
[Vdd(i, j)− Ξ1] +O(τ2) (3)

Cyzij =
τf3

8

[
sin(2θ) cos θ

2
Ξ1 + Vdd(i, j) sin3 θ

]
+O(τ2)

for i 6= j. To linear order, Cααij and Cxzij are constant.

For i = j, the Pauli algebra reduces 〈Sαi S
γ
i 〉 to

〈
Sδi
〉
.

One can compute Ξm rapidly for arbitrary lattices and
analytically in special cases (e.g. one dimension).

Ising limit, J⊥ = 0. We extend the Emch-Radin so-
lution [58–62] for Ising dynamics to arbitrary θ, inter-
spin coupling strengths, correlations, and to include dis-
order [63]. We find

〈Sxi (t)〉=f
sin(θ)

2
Re

∏
j 6=i

∑
ρj

g(ρj)e
1
2 itJzVdd(i,i+j)ρj

, (4)

where the sum runs over ρ = 0 (unoccupied site) and
ρ = ±1 (Sz = ±1/2), and g(ρ) = (1 − f)δρ,0 +
f sin2(θ/2)δρ,1 + f cos2(θ/2)δρ,−1. The expectation 〈Syi 〉
takes the imaginary (rather than real) part of the square-
bracketed expression in Eq. (4). Similarly one can obtain
correlations [40]. The product in Eq. (4) is readily eval-
uated numerically by truncating the interaction range,
even for a truncation including thousands of sites. In
special limits 〈Sxi 〉 simplifies: e.g., for θ = π/2 and f = 1,
〈Sxi (t)〉 = (1/2)

∏
j 6=i cos(JzVdd(i, j)t/2).

Near-Heisenberg limit, Jz ≈ J⊥.—Here a finite size
gap ∆ ∝ J⊥/N

2 for N particles to excitations out of
the Dicke (fully symmetric) manifold prevents states
initially in the manifold from leaving it when |Jz −
J⊥| � ∆ [64, 65]. The effective Hamiltonian ob-
tained from projecting H to the Dicke manifold is the
collective spin N/2 model [64, 65] Heff = χ(Sz)2 with
χ = J⊥−Jz

N(N−1)

∑
i 6=j Vdd(i, i + j). Dynamics are straight-

forwardly calculated for any disorder configuration, since
there are only N + 1 states in the Dicke manifold; for

example 〈Sxi 〉 = sin θ
2 Re

[
(cos(χτ)− i cos θ sin(χτ))

N−1
]
.

Again 〈Syi 〉 is the corresponding imaginary part. Unlike
the other approximations, this is valid only for finite N .

One dimension.—We use adaptive t-DMRG [54–57] to
calculate dynamics of one dimensional chains. We treat
20 site chains and find finite size effects to be fairly small.
We discretize time in steps of 0.05J−1

z , and find a dis-
carded weight of ∼< 10−9 for times ∼< 10J−1

z , adaptively
keeping m = 50-500 reduced density matrix states. Al-
together, we expect errors dominated by the disorder av-
erage, which is taken over 100 random configurations.

Results: global perspective.—Fig. 3 overviews dynam-
ics, from the calculations above, as a function of J⊥/Jz,
f , and θ. Experimentally, these are controlled by elec-
tric field [26, 27], temperature/density, and first Ramsey
pulse area, respectively. Fig. 3 presents dimension d = 1
results, but our analytic expressions show that the d = 1
results are representative of d > 1. Dynamics in d > 1
has more neighbors and thus is faster. Fig. 3 shows that
the short time expansion describes the dynamics to a
time at which 〈Sx(t)〉 changes from 〈Sx(t = 0)〉 by more
than the disorder fluctuations (shaded regions), enabling
experiments to measure the short time dynamics “signal”
above the disorder “noise.”

Next, consider f = 1 and θ = π/2. For J⊥/Jz = 0,
〈Sxi 〉 oscillates with period 2π/Jz from the nearest neigh-
bor interaction, superposed with slower oscillations from
longer range interactions. The first-few-neighbor interac-
tions account for the dynamics to times t ∼ 10J−1

z . For
J⊥ = 0 the frequencies form a discrete set. Increasing
J⊥ gives a continuum of frequencies, damping the oscil-
lations. Approaching J⊥ = Jz, the dynamics slows down,
since at J⊥ = Jz the initial state is an eigenstate of the
Hamiltonian. As J⊥/Jz increases further, the dynamics
is damped with characteristic timescale (J⊥ − Jz)−1.
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FIG. 4. (Color online) Correlation and squeezing dynamics.
Top:

〈
Sxj S

x
j+i

〉
−

〈
Sxj

〉 〈
Sxj+i

〉
(averaged over j) for J⊥ = 2Jz

with θ = π/2 as a function of time for f = 0.4 (left) and
f = 1 (right), compared to the ground state (upper right
bar). Other f , θ, and J⊥ are similar. Bottom: squeezing in
decibels as a function of time, quantifying quantum-enhanced
metrological utility, for J⊥ = 2Jz, f = 1; J⊥ = 0, f = 1,
J⊥ = 2Jz, f = 0.4, and J⊥ = 0, f = 0.4 (top to bottom) and
θ = π/2.

For f � 1, the behavior crosses over to that of in-
dependent clusters, eventually with only two particles.
The largest frequency is roughly half that for f = 1,
since there is a single neighbor instead of two. Thus, the
dynamics remains roughly as fast as for f = 1, but the
dynamics’ magnitude at times ∼ {J−1

z , J−1
⊥ } is smaller

since there are fewer molecules and only a fraction of
them are close enough to interact. At any f the overall
timescales are roughly independent of θ, but for small
θ or to linear order in time, the Bloch vector undergoes
roughly mean-field precession, while for θ ≈ π/2 or longer
times, it depolarizes (shrinks).

Achieving goals of emulating quantum magnetism.—
For experimental verification of the emulation of the XXZ
model and benchmarking of its accuracy, we consider
short time dynamics. Fig. 2 (right) shows their char-
acteristic dependence on θ, f , and {Jz, J⊥}. Fig. 2 (left)
shows Jz and J⊥’s dependence on the dc electric field for
two rotational state choices.

To achieve the second goal of generating interesting
well-understood states, we note that for f ≈ 1 and
θ = π/2 and Jz ≈ J⊥, the state at t = π/(2χ) is
|GHZ〉 = (1/

√
2)(|← · · · ←〉 + eiφ |→ · · · →〉) for some

φ [64–67]. This is a cat state, specifically GHZ/NOON
state, useful for metrology [68]. Ising dynamics offer
other interesting states. For nearest neighbor interac-
tions and θ = π/2, the state at t = π/(2Jz) is a clus-
ter state, which suffices for universal measurement based

quantum computing [69].

Figure 4 (bottom) quantifies how one notion of the
utility of these quantum states – their ability to perform
quantum-enhanced metrology – extends to f < 1. While
the precision of measuring frequencies with uncorrelated
spins is limited to the standard quantum limit, scaling
as 1/

√
N , entangled spins with “squeezing” can scale as

1/N . The squeezing parameter ξ quantifies this improve-

ment, given by ξ ≡ minφ

√
N
√
〈(S·n̂φ)2〉−〈S·n̂φ〉2
〈Sx〉 minimiz-

ing over unit vectors n̂φ in the y-z plane. For θ = π/2,
Fig. 4 (bottom) plots decibels squeezing, dB squeezing =
−10 log10 ξ, for 100 independent tubes with L = 20. It
shows that substantial squeezing (dB squeezing > 0) oc-
curs for a broad range of J⊥/Jz and t, even if f < 1. In
fact, it appears squeezing generically persists for all f .

A generic implementation of the proposed dynamics in
d > 1 achieves the third goal, emulating quantum mag-
netism in theoretically intractable regimes. Away from
the short time, Ising, and Heisenberg limits, no solution
is known in d > 1. As Fig. 4 shows, in d = 1 strong
correlations develop. For f = 1 these are even larger at
large distance than in the ground state. Interestingly,
the dynamics shows a light-cone-like spreading to an ap-
parent steady state. We note recent work on many-body
localization in quenches of disordered XXZ chains [70].

Experimental outlook.—Though our discussion focused
on molecules, we point out that the dynamics stud-
ied here can have direct application in other physi-
cal systems, including condensed matter [48], trapped
ions [51, 71], and optical lattice clocks [72, 73].

We close by noting technical details for molecule exper-
iments. Rotational states’ polarizabilities differ [26, 74],
so the optical trap induces a spatially varying field∑
i hiS

z
i . Also, Eq. (1) ignores density-density ninj and

density-spin niS
z
j interactions [26, 27]. For f < 1, the

latter gives a spatially varying magnetic field that de-
pends on molecules’ random positions. Spin-echo pulses
common in Ramsey experiments remove both effects.

Summary.—We have shown that Ramsey spectroscopy
enables ongoing ultracold polar molecule experiments
to accomplish three goals for emulating quantum mag-
netism: (1) benchmarking the emulation’s accuracy (us-
ing short time dynamics), (2) generating strongly cor-
related and entangled states in well-understood limits
(Ising, near-Heisenberg, one dimension), and (3) explor-
ing strongly correlated dynamics in regimes inaccessible
to theory (generic case in dimensions d > 1).

Finally, we mention that in addition to the XXZ Hamil-
tonian explored in this paper, our dynamic protocol
should be useful for verifying emulation of more com-
plicated spin models that may be realized with ultracold
molecules, as in Refs. [25–27] and beyond.
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