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The present Letter puts forth a possible explanation for the outstanding problem of measured
proton temperature anisotropy in the solar wind at 1 AU apparently being regulated by the mirror
and oblique fire-hose instabilities. Making use of the fact that the local magnetic field intensity
near 1 AU undergoes intermediate-scale temporal variations, the present Letter carries out the
quasilinear analysis of the temperature anisotropy-driven instabilities with time-varying local B
field, assuming arbitrary initial temperature ratios and parallel betas. It is found that the saturated
states in (β‖, T⊥/T‖) space are bounded by the mirror and oblique fire-hose instabilities, which is
superficially similar to the observation.
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In the present Letter we address an important prob-
lem of the proton temperature anisotropy versus plasma
beta inverse correlation in the solar wind. The obser-
vation of proton temperature anisotropy in the Earth’s
magnetosheath and in the solar wind near 1 AU [1–9]
reveals that the predicted anisotropy does not follow the
double-adiabatic theory. In the absence of collisions or
significant heat flux, this is commonly interpreted as the
result of collective dissipation by kinetic plasma instabil-
ities. For T⊥ > T‖, where T⊥ and T‖ are perpendicular
and parallel proton temperatures defined with respect
to the ambient magnetic field, the proton cyclotron, or
electromagnetic ion cyclotron (EMIC), and mirror in-
stabilities are excited, while for T⊥ < T‖, the unstable
fire-hose mode is excited. These instabilities are charac-
terized by the temperature ratio T⊥/T‖ and the plasma

beta, β‖ = 8πnT‖/B
2, where n and B are density and

magnetic field intensity, respectively.

In the literature various empirical marginal stability
criteria for these instabilities, known as the anisotropy
versus beta relation, have been constructed. For in-
stance, Reference [7] summarizes the various formulas as

T⊥/T‖ = 1 + S(β‖ + β0)−α, (1)

where (S, β0, α) are given by (0.43, 0.0004, 0.42)
for the proton cyclotron, (0.77, 0.016, 0.76) for mir-
ror, (−0.47,−0.59, 0.53) for parallel fire-hose, and
(−1.4, 0.11, 1) for the oblique fire-hose instabilities
[10, 11]. It is suggested that these relation may be used
as closure relations for macroscopic models [12, 13]. It
should be emphasized, however, that these relations are
not rigorously derived.

In Refs. [14, 15], however, the physics-based inverse
correlations were derived for the first time by means of
quasilinear kinetic theory. According to Refs. [14, 15]
the low-beta regime the anisotropy upper bound should
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be regulated by the proton-cyclotron instability, while
for high beta’s, the upper bound should be governed by
the mirror instability threshold. While some observations
made in the magnetosheath are consistent with this find-
ing [16, 17], the data obtained in the solar wind at 1 AU,
as reported in Refs. [7, 9], for example, are apparently or-
ganized according to the mirror mode constraint for all
beta regimes in the case of T⊥ > T‖, and somewhat less
apparently by the oblique fire-hose threshold condition
in the case of T⊥ < T‖.

In order to resolve this issue, Ref. [18] notes that the
asymptotic proton velocity distribution in the satura-
tion stage of the proton-cyclotron instability deviates
considerably from the bi-Maxwellian form such that the
marginal stability condition may be modified from the
linear prediction based upon the bi-Maxwellian model.
Alternatively, the presence of Helium ions may substan-
tially raise the proton cyclotron threshold [19, 20]. While
these ideas may be relevant, they fail to accurately ac-
count for the observational discrepancy.

In the present Letter, we put forth a different expla-
nation. We begin by noting that the solar wind at 1AU
is replete with intermediate scale spatio-temporal vari-
ations associated with the ambient magnetic field and
other physical quantities. An example of the ambient B
field intensity variation at 1AU is illustrated in Fig. 1,
where the data are taken from the Wind spacecraft mea-
surement made on 29 July 2000. Considering that the
average magnetic field shown in Fig. 1 is roughly 8 nT,
which translates to local proton gyrofrequency Ωi ' 0.77
(rad/sec), and that the characteristic time scale for the
B field variation is ∼ 650 sec, which implies 500 Ω−1i , it
is appropriate to treat the B field intensity variation in
an adiabatic manner.

Since the proton cyclotron wave relies on the cyclotron
resonance ω−k‖v‖−Ωi(x, t) = 0, while the mirror mode
is dictated by the Landau resonance ω−k‖v‖ = 0, we ex-
pect that the adiabatic variation of B field may lead to
the suppression of the proton-cyclotron instability, while
the mirror instability may be largely unaffected. Here,
ω, k‖, v‖ are the wave angular frequency, wave vector
and velocity components parallel to B, and Ωi(x, t) =
eB(x, t)/mic corresponds to the locally-varying proton
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FIG. 1: The local variation of the ambient B field intensity
measured by the Wind spacecraft on 29 July 2000 at 1 AU.

cyclotron frequency, e, mi, and c denoting the unit elec-
tric charge, the proton mass, and the speed of light in
vacuo, respectively.

In order to verify this hypothesis we impose the adia-
batically varying local proton gyrofrequency, Ωi → Ωi(t)
to the basic theory. Note that in general the gyrofre-
quency should have both the spatial and temporal de-
pendences, Ωi(x, t). However, for the sake of simplicity,
we consider only the temporal variation in the present
Letter. A more general analysis is the subject of the fu-
ture work. The time-varying gyrofrequency also affects
the right-hand circularly polarized kinetic fire-hose reso-
nance condition, ω−k‖v‖+Ωi(t) = 0, in the case of T⊥ <
T‖. Let us assume that the proton velocity distribu-
tion function is given by a time-dependent bi-Maxwellian
form, fi(v⊥, v‖, t) = A(t) exp[−v2⊥/α2

⊥(t) − v2‖/α
2
‖(t)],

where α⊥(t) = [2T⊥(t)/mi]
1/2, α‖(t) = [2T‖(t)/mi]

1/2,

A−1(t) = π3/2α2
⊥(t)α‖(t), which is of course, an approxi-

mation, but it was demonstrated to be quite adequate in
Refs. [14, 15].

The adiabatic time dependence of the local magnetic
field intensity is modeled by B(t) = B0∆(t), where ∆(t)
is to be determined. When T⊥/T‖ > 1, the instanta-
neous dispersion relations for the proton-cyclotron (de-
noted with superscript C) and mirror (denoted by M)
modes are given, respectively, by [15]

c2k2

ω2
pi

= −2λ (Λ0 − Λ1)

(
1 +

T⊥
T‖

Z ′(ξ)

2

)
, (2)

where ξ = iγMk /k‖α‖, λ = k2⊥α
2
⊥/2Ω2

i0∆2(t), and

c2k2

ω2
pi

= − ω

Ωi
+

2Λ1

λ

[
ξZ(ζ)−

(
T⊥
T‖
− 1

)
Z ′(ζ)

2

]
, (3)

where ω = ωCk + iγCk , Ωi = Ωi0∆(t), ξ = ω/k‖α‖, and

ζ = (ω − Ωi)/k‖α‖. In the above ω2
pi = 4πne2/mi is the

square of the proton plasma frequency, Ωi0 = eB0/mic
is the reference proton cyclotron frequency, Z(ζ) is the
plasma dispersion function, and Λn(λ) = In(λ)e−λ, In
being the modified Bessel function of the first kind of
order n.

The time evolution of T⊥ and T‖ is governed by the
quasilinear moment kinetic equation, in which the influ-
ence of the proton-cyclotron and mirror modes are simul-

taneously taken into account [15],

dnT⊥
dt

= −
∫
dk
γMk |δBMk |2

2π

(
1 + λ(Λ0 − Λ1)

Ω2
i0

k2v2A

)
−
∫
dk
γCk |δBCk |2

4π

[
1 +

Ω2
i0

k2v2A

(
ωCk

Ωi0∆(t)
− 1

2
+

Λ1

λ

)]
,

dnT‖

dt
=

∫
dk
γMk |δBMk |2

2π

(
1 + 2λ(Λ0 − Λ1)

Ω2
i0

k2v2A

)
+

∫
dk
γCk |δBCk |2

4π

[
1 +

2Ω2
i0

k2v2A

(
ωCk

Ωi0∆(t)
− 1

2
+

Λ1

λ

)]
.

(4)

Here, |δBCk |2/(8π) and |δBMk |2/(8π) are spectral mag-
netic wave energy densities associated with the proton-
cyclotron and mirror modes, respectively, and they obey
the wave kinetic equations, ∂|δBak|2/∂t = 2γak |δBak|2,
where a = M,C.
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FIG. 2: Sample quasilinear calculations showing (top) the
trajectories of initial states in (β‖, T⊥/T‖) space, (bottom left)
the time evolution of T⊥ and T‖, and (bottom right) the wave
spectral energies for proton-cyclotron and mirror modes, for
three different time-varying B field models.

Figure 2 shows sample quasilinear calculations of
combined mirror and proton cyclotron instabilities un-
der suitable models of the time-dependent magnetic
field variation. The trajectories in Fig. 2a shows the
time evolution of the the initial state corresponding to
[β‖(0), T⊥(0)/T‖(0)] = (0.05, 9) in (β‖, T⊥/T‖) space.
The increase in the total wave energy is depicted by the
colormap scale. Case A corresponds to the uniform case,
∆(t) = 1. Next, we modeled the monotonically decreas-
ing field (case B) by ∆(t) = 1 − 0.5 tanh(10t/t∗), where
Ωi0t∗ = 500. For B field that is initially decreasing but
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subsequently increasing (case C), we choose

∆(t) =

(
1− t/t∗ 0 ≤ Ωi0t ≤ 200

3/5 + (t− 200)/t∗ 200 < Ωi0t ≤ 500
. (5)

For case B, the final state is located in a region inter-
mediate to the proton-cyclotron and mirror instability
thresholds, while for case C the final state is located be-
low the marginal proton-cyclotron stability curve. The
above three choices of ∆(t) may be arbitrary, but they are
motivated to model the various segments of time-varying
B field as shown in Fig. 1.

The time history of the temperature anisotropy and
parallel beta is shown in Fig. 2b for case A (black), B
(blue), and C (red). Figure 2c plots the evolution of
the wave energy densities associated with the proton cy-
clotron (solid) and mirror (dots) modes. Since the ini-
tial state for all three cases correspond to the low-beta
regime, the proton cyclotron mode dominates over the
mirror mode for all three cases, as dictated by linear the-
ory. However, it is seen that the mirror mode amplitude
is appreciably higher for case B when compared with the
other two cases.

To complete the analysis, we also consider the case of
T⊥/T‖ < 1, for which the combined parallel and oblique
fire-hose instabilities should be taken into account. How-
ever, since the quasilinear theory of oblique fire-hose in-
stability does not yet exist, we confine ourselves only to
the parallel fire-hose instability. The instantaneous dis-
persion relation for the parallel fire-hose mode is given
by [14]

c2k2

ω2
pi

=
ω

Ωi
+

[
ξ Z(ζ)−

(
T⊥
T‖
− 1

)
Z ′(ζ)

2

]
, (6)

where ω = ωFk +iγFk , Ωi = Ωi0∆(t), ξ = ω/kα‖, ζ = (ω+
Ωi)/kα‖, and the superscript F denotes the parallel fire-
hose mode. The time evolution of T⊥ and T‖ is governed
by the quasilinear moment kinetic equations [14]

dnT⊥
dt

=

∫
dk
γFk |δBFk |2

4π

(
ωFk Ωi0

k2v2A∆(t)
− 1

)
,

dnT‖

dt
= −

∫
dk
γFk |δBFk |2

4π

(
2ωFk Ωi0
k2v2A∆(t)

− 1

)
, (7)

where |δBFk |2/8π is the spectral magnetic wave energy
density associated with the unstable parallel fire-hose
mode, which is governed by the wave kinetic equation
∂|δBFk |2/∂t = 2γFk |δBFk |2.

In Fig. 3a we show the trajectories in (β‖, T⊥/T‖) space
for three model cases. For all three cases, the initial
state is [β‖(0), T⊥(0)/T‖(0)] = (2, 0.12). Case A corre-
sponds to the uniform case, ∆(t) = 1, and the system
evolves towards the marginal parallel fire-hose state as
expected. For case B we consider the monotonically de-
creasing B field, modeled by ∆(t) = 1− 0.5 tanh(5t/t∗),
where Ωi0t∗ = 1000. Case C depicts a model where B is
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FIG. 3: Sample quasilinear calculations showing (top) the
trajectories of initial state in (β‖, T⊥/T‖) space, (bottom left)
the time evolution of T⊥ and T‖, and (bottom right) the wave
spectral energy for parallel fire-hose mode, for three different
time-varying B field models.

initially decreasing but subsequently increasing,

∆(t) =

(
1− 3t/5t∗ 0 ≤ Ωi0t ≤ 500

7/10 + 3(t− 500)/(5t∗) 500 < Ωi0t ≤ 103
,

(8)
For case B the final state is located in a region inter-
mediate to the parallel and oblique fire-hose instability
thresholds, while for case C it is found below the marginal
parallel fire-hose curve. Figure 3b depicts the time evolu-
tion of T⊥/T‖ and β‖ for case A (black), B (blue), and C
(red). The wave energy density for three cases is shown
in Fig. 3c.

On the basis of sample results shown in Figs. 2 and
3, we have considered a number of time-varying B
field models, and a large ensemble of initial points in
(β‖, T⊥/T‖) space. The basic functional forms of ∆(t) for
increasing and decreasing time profile are variously mod-
eled with the similar forms as described above. Also,
we varied the numerical coefficients. We then allowed
the initial ensemble points to evolve subject to proton-
cyclotron, mirror, and parallel fire-hose instabilities. In
order to simplify the analysis, we have adopted the ap-
proach that the initial ensemble of solar wind conditions
are in arbitrary unstable states. This of course is a ide-
alization of the actual situation, where in reality the
solar wind anisotropy must be allowed to develop self-
consistently. Upon incorporating the adiabatic spatial
dependence of the present model and allowing slow com-
pression or expansion, we may be able to self-consistently
generate the anisotropy instead of assuming arbitrary ini-
tially anisotropic states. However, such a task is beyond
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FIG. 4: An ensemble of final states in (β‖, T⊥/T‖) space,
where the final computation time for all the ensemble points
are chosen as Ωit = 500 (for initial T⊥ > T‖ cases) and
Ωit = 1000 (for initial T‖ > T⊥ cases), respectively. The ar-
bitrary initial states were allowed to evolve subject to various
instabilities, and for a number of time-varying B field mod-
els. After computing quasilinear equations up to Ωit = 500
or Ωit = 1000 time steps, the final states are plotted above.
The colormap depicts the final values of δB/B0 in logarith-
mic scale. Note that we superposed the empirical threshold
conditions (1) for a visual comparison.

the scope of the present Letter since we do not yet have
the spatial dependence in our model. In any case, adopt-
ing the present approach, we have obtained the simulated
solar wind proton distribution in (β‖, T⊥/T‖) space. The
result is shown in Fig. 4. As one can see, the proton data
are spread over the region bounded by the mirror (for
T⊥/T‖ > 1) and the oblique fire-hose (for T⊥/T‖ < 1)
instability thresholds, even though oblique fire-hose in-
stability is not even considered in our model. Note also
that a large portion of ensemble points are found below

the proton-cyclotron and parallel fire-hose marginal sta-
bility curves. Note that the amplitude of the magnetic
fluctuation increases with increasing β‖, especially and
along the mirror and oblique fire-hose marginal instabil-
ity curves. Figure 4 shows a superficial but remarkable
resemblance to actual solar wind observations near 1 AU
– see, e.g., the second panel of Fig. 1 of Ref. [9].

In summary, we have demonstrated that by judiciously
modeling the time-varying B field intensity and by con-
sidering an ensemble of initially unstable data points,
we may simulate the solar wind proton distribution in
(β‖, T⊥/T‖) space that qualitatively resembles the actual
data in which the marginal mirror-mode and oblique fire-
hose mode threshold conditions apparently constrain the
proton temperature anisotropy upper bound. The major
finding of the present Letter is summarized by Figure 4.

To reiterate, in the real solar wind the temperature
anisotropy must be self-generated instead of being im-
posed as an arbitrary initial condition. This is, in princi-
ple, possible once we incorporate the spatial dependence
in our model. Also, the effects of density variation can be
important. For T⊥/T‖ < 1, the influence of the oblique
fire-hose mode, which we ignored in the analysis, should
also be included. These are subjects of the future re-
search. The importance of the present work is that the
concept of intermediate scale variation of macroscopic
quantities such as the B field is a viable one, and that a
more rigorous and complete model of the kinetic-global
solar wind model may be constructed on the basis of the
present method.
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