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We construct a universal set of high fidelity quantum gates to be used on a sparse bipartite
lattice with always-on Ising couplings. The gates are based on dynamical decoupling sequences
using shaped pulses, they protect against low-frequency phase noise, and can be run in parallel
on non-neighboring qubits. This makes them suitable for implementing quantum error correction
with low-density parity check codes like the surface codes and their finite-rate generalizations. We
illustrate the construction by simulating the quantum Zeno effect with the [[4, 2, 2]] toric code on a
spin chain.

Quantum error correction (QEC) makes it theoreti-
cally possible to perform large quantum computations
with a finite per-qubit error rate[1–3]. In practice QEC is
extremely difficult since the corresponding error probabil-
ity threshold is small[4–9]. When only local interactions
between the qubits are allowed, the estimated threshold
value is the highest, around 1%, for toric and related sur-
face codes[5, 9, 10]. However, as to how to implement the
operations efficiently and with the required accuracy, is
still an open question.

Qubits with always-on couplings are a natural model
for several potential quantum computer (QC) architec-
tures, for e.g., the original Kane proposal[11], nitro-
gen vacancy centers in diamond[12, 13], superconducting
phase qubits[14, 15], and circuit QED lattices[16, 17].
In general, compared to their counterparts with tunable
couplings, qubits with always-on couplings can be ex-
pected to have better parameter stability and longer co-
herence times. In addition, over sixty years of develop-
ment in nuclear magnetic resonance (NMR) yielded an
amazing degree of control available to such systems[18,
19]. Related techniques based on selective dynamical de-
coupling(DD) of parts of the system Hamiltonian, with
carefully designed pulse sequences, have been further de-
veloped in application to quantum computation[20–26].

While NMR quantum computation is not easily
scalable[27], it still holds several records for the num-
ber of coherently controlled qubits[19]. However,
some of these have been achieved with the help of
strongly-modulated pulses, computer-generated single-
and multi-qubit gates tailored for a particular system
Hamiltonian[28–31]. While such gates can be used in
other QC architectures[32], they may violate scalability.

On the other hand, NMR-inspired techniques like DD
can also be used to control large systems with local in-
teractions, where the scalability is achieved by design-
ing pulses and sequences to a given order in the Magnus
series[33] on small qubit clusters[34, 35]. DD is also ex-
cellent in producing accurate control for systems where
not all interactions are known as one can decouple in-
teractions with the given symmetry[36, 37]. Moreover,
DD works best against errors coming from low-frequency

bath degrees of freedom which tend to dominate the de-
coherence rates, and it does not require additional qubits.
In short, DD is an excellent choice for the first level of
coherence protection; it’s use could greatly reduce the
required repetition rate of the QEC cycle.

This is well recognized in the community and applica-
tions of DD for QC are actively investigated by a number
of groups. However, most publications on the subject il-
lustrate general principles using a single qubit as an ex-
ample, leaving out the issues of design and simulation
of scalable approaches to multi-qubit dynamical decou-
pling. While the techniques for larger systems exist, they
typically require longer decoupling sequences[24, 36, 38].
The goal of this work is to provide a scalable

benchmark implementation of a universal set of accurate
gates using soft pulses for a system with always-on qubit
couplings. Specifically, we construct one- and two-qubit
gates with built-in DD-protection against low-frequency
phase noise for a sparse bipartite lattice of qubits with
the nearest-neighbor (n.n.) Ising couplings. The con-
structed gates use finite-amplitude shaped pulses which
can be implemented experimentally. They are scalable,
in the sense that the same construction works for an arbi-
trary lattice, and they can be executed in parallel for dif-
ferent qubits and/or qubit pairs. This makes them ideal
for implementing QEC with quantum low-density parity
check (LDPC) codes[39, 40], in particular, the surface
codes and their finite-rate generalizations[5, 41, 42]. In
the limit of a very slow (classical) bath the gates are ac-
curate to second order in the Magnus expansion, meaning
that their infidelity scales as sixth or higher powers of the
coupling, in units of inverse pulse duration. We demon-
strate the accuracy of the constructed gates by simu-
lating the quantum Zeno effect[43, 44] for the [[4, 2, 2]]
error-detecting toric code, in repeated cycles, on an Ising
chain. The simulations are done with five qubits, using
classical correlated noise as a source of dephasing.

Two techniques are essential to our work. First, the
use of NMR-style self-refocusing pulses[34, 45–47], which
(to a given order) work as drop-in replacements for
hard, δ-function-like pulses. In our simulations, we use
the second-order pulses designed and characterized in



2

Refs. 34, 35, 46, and 48. The second technique is the
Eulerian path construction[23], and its extension, the dy-
namically corrected gates[38, 49, 50], which allow for the
construction of composite pulses accurate to a given or-
der of the Magnus expansion.

We construct our gates for a collection of qubits
arranged on an arbitrary sparse bipartite graph G, with
the edge set E , with an Ising coupling for every edge,

HS ≡
1

2

∑

(ij)∈E
Jijσ

z
i σ

z
j , (1)

arbitrary (within the bandwidth) single-qubit control,

HC ≡
1

2

∑

i

∑

µ=x,y,z

σµi Viµ(t), (2)

in the presence of low-frequency phase noise

HN ≡
1

2

∑

i

σziBi +HB. (3)

Here, Bi are the bath coupling operators (e.g., from low-
frequency phonons or nuclear spins), and HB is the cor-
responding bath Hamiltonian independent from σµi .

Decoherence resulting from higher-frequency bath
modes, e.g., as described by the Lindblad equation[51],
can be also introduced, but at later design stages, since
DD is not effective against such decoherence. While we
do not consider Markovian decoherence here, we mention
in passing that the main effects of DD are the suppression
of equilibrium population asymmetries (qubits are con-
stantly flipped), and with soft-pulse DD, the redistribu-
tion of decoherence rates between the channels[48]. For
example, even if dephasing is dominant for non-driven
qubits, any sequence of finite-width pulses creates some
longitudinal relaxation (compensated by a reduction of
the dephasing rate).

To construct the CNOT gate, we use the identity [52]

CNOTcd = eiπ/4YcX̄cȲcXdȲde
−iπ/4σz

cσ
z
dYd, (4)

where Xi ≡ exp
(
−iπ4σxi

)
, Yi ≡ exp

(
−iπ4σ

y
i

)
, are π/2

unitaries, and X̄i, Ȳi denote the corresponding conju-
gate gates [in simulations we use the equivalent form with
YcX̄cȲc ≡ Zc].
To implement the two-qubit zz-rotation gate,

e−iπ/4σ
z
cσ

z
d , we run two period-16τp decoupling sequences

on the sublattices A and B, VA(t) and VB(t) in Fig. 1,
where each pulse of duration τp is a symmetric π pulse
applied in the x direction. When the pulses are second-
order self-refocusing pulses [e.g., Q1(π) from Refs. 34 and
46 shown], these sequences suppress the effect of the Ising
couplings HS and the noise HN to second order in the
Magnus expansion, meaning that the effective Hamilto-
nian is just HB, with the error scaling as ∝ τ2p . This
gives the error in the unitary matrix scaling as ∝ τ3p , and

the corresponding infidelity 1−F scaling as ∝ τ6p (we use
the average fidelity F expressed in terms of the unitary
evolution matrix, see Appendix of Ref. [46]).
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FIG. 1. (color online) Pulse sequences used to implement
two-qubit zz-rotations on a bipartite lattice with Ising cou-
plings. Global sequences of π-pulses in the x direction, VA(t)
and VB(t), are executed on the idle qubits of the two sublat-
tices. These decouple the inter-qubit Ising couplings and also
the single-qubit low-frequency phase noise terms. In order
to couple two neighboring qubits, the sequences VA, VB are
respectively replaced by VC , VD on these qubits. This pro-
duces an effective Ising Hamiltonian with half of the original
coupling. Shown are Q1(π) second-order self-refocusing pulse
shapes[34, 46] used in the simulations.

To turn on the coupling between two neighboring
qubits c, d, the two sublattice sequences on these qubits
are replaced with VC(t) and VD(t), respectively, see
Fig. 1. These sequences are chosen so that the Ising cou-
pling between these qubits is only removed half of the
time, while the coupling to other qubits continues to be
removed. More precisely, with second-order pulses, the
effective Hamiltonian isHB+(J/4)σzcσ

z
d+O(τ2p ). Repeat-

ing this sequence m times gives the system evolution

Uzz = exp(−iασzcσzd), α = 4mJτp, (5)

with the error scaling as ∝ mτ3p , where the term as-
sociated with the bath evolution is suppressed. Such
sequences can be run simultaneously on many pairs of
qubits as long as qubits from different pairs are not mu-
tually coupled.
We implement single-qubit rotations with the

leading-order dynamically corrected gates (DCG) [38,
49], using the pulse sequences in Fig. 2. Again, two
decoupling sequences, V1(t) and V2(t), are run globally
on the two sublattices; additional pulses are inserted for
the qubits to be rotated [V3(t) in Fig. 2 shows an im-
plementation of the π/2 rotation with respect to Y axis
on a sublattice-A qubit]. The Hadamard gates are imple-
mented using these single qubit rotations and the identity
UH = e−iπ/2 exp(iπ4σy) exp(iπ2σx).
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FIG. 2. (color online) Pulse sequence used to implement
single-qubit rotations. The sequences of π pulses in the x di-
rection, V1(t) and V2(t), are executed globally on idle qubits of
the two sublattices. A single-qubit rotation is implemented as
a DCG by adding three pulse-antipulse combinations and the
stretched pulse in the shaded regions (y axis). The sequence
V3(t), where pulses in the shaded regions are Q1(π/2), corre-
sponds to a (π/2)Y operation on a sublattice-A qubit. Such
gates can be executed on any set of non-neighboring qubits.

Nominally, DCGs guarantee first-order decoupling
with any pulse shape. However, in our case, the de-
coupling sequences Vi(t), i = 1, 2, do not go over the
complete single-qubit groups. Thus, unoptimized (e.g.,
Gaussian) pulses can produce unitary errors scaling lin-
early with the pulse duration τp; one needs first-order
self-refocusing pulses[34, 45, 46] to get first-order decou-
pling. In the case of the second-order pulses (e.g., Q1(φ)
[46]), the remaining order-τ2p errors are all proportional to
different commutators [Bi, Bj ] and [HB, Bi], which gives
second-order decoupling (infidelity ∝ τ6p ) when the oper-
ators Bi are replaced by c-numbers ∆i (cf. chemical shifts
in NMR).

These predictions are confirmed in Fig. 3 which shows
the average infidelities for a single (π/2)Y rotation
of qubit-3 [Fig. 3(a)] and a complete CNOT23 gate
[Fig. 3(b)] as a function of the r.m.s. chemical shift ∆
(in units of τ−1p ), obtained numerically for a four-qubit
Ising chain. The simulations are done with a custom
C++ program using fourth-order Runge-Kutta algorithm
for integrating the unitary dynamics and the Eigen3

library[53] for matrix arithmetics. We fix the value of
Jij = J = π/(16mτp) with m = 5 repetitions of the basic
sequence [see Eqs. (4), (5) and Fig. 1] in the CNOT gate;
with the addition of four single-qubit DCGs [see Fig. 2]
the CNOT duration is tCNOT = 9 × 16τp = 144τp. For
small ∆, the infidelities are dominated by the decoupling
accuracy of the inter-qubit interactions, while they scale
as ∝ ∆6τ6p for large ∆, see the graphs of the correspond-
ing slopes in the insets.

We illustrate the performance of the designed
gates by simulating the quantum Zeno effect[43, 44] us-
ing the four-qubit toric error-detecting code [10, 54]. We
used zero-mean classical stationary Gaussian stochas-
tic processes with Gaussian correlations, 〈Bi(t)Bj(t′)〉 =
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FIG. 3. (color online) (a) The infidelity of the gate in Fig. 2
and (b) the infidelity of the complete C-not gate between
qubits 2 and 3 of a four-qubit n.n. Ising chain as a func-
tion of r.m.s. chemical shift ∆ (pulse sequences not shown).
For small ∆ the errors saturate because of the fixed J ; when
∆ is large, chemical shifts dominate the errors. The insets
show the corresponding slopes; the slope of ∼ 6 [infidelity
∝ (τp∆)6] indicate that the on-site chemical shifts are decou-
pled to quadratic order. Analogous calculations with first-
order pulses[34, 46] S1(π) and S1(π/2) give 1st-order [infi-
delity ∝ (τp∆)4] decoupling and two orders of magnitude
higher infidelities (not shown); Gaussian pulses increase in-
fidelities by up to five orders of magnitude.

σ2δije
−(t−t′)2/τ2

c , as the source of decoherence. These are
obtained by applying the Gaussian filter to discrete sets
of uncorrelated random numbers drawn from the Gaus-
sian distribution, and using the standard cubic spline in-
terpolation with the result.

The [[4, 2, 2]] toric code is a stabilizer code [55, 56]
encoding an arbitrary state of k = 2 qubits into a 22-
dimensional subspaceQ of the 4-qubit Hilbert space. The
subspace Q is the common +1 eigenspace of the two sta-
bilizer generators, Gx = σx1σ

x
2σ

x
3σ

x
4 and Gz = σz1σ

z
2σ

z
3σ

z
4 .

We use the following explicit map (up to normalization)
for the logical qubits
∣∣0̃0̃
〉

= |0000〉+ |1111〉,
∣∣0̃1̃
〉

= |0011〉+ |1100〉,
∣∣1̃0̃
〉

= |0101〉+ |1010〉,
∣∣1̃1̃
〉

= |0110〉+ |1001〉, (6)

An application of any single-qubit error, i.e., a Pauli op-
erator σµi , µ = x, y, z, takes the encoded wavefunction to
one of the three orthogonal subspaces, where one or both
of the eigenvalues of Gx, Gz (these eigenvalues form the
error syndrome) equal −1. The code has distance d = 2
since some two-qubit errors, e.g., σz1σ

z
2 , act within the

code space and cannot be detected.
In the presence of the error Hamiltonian (3), to lead-

ing order in the perturbation, the original wavefunc-
tion ψ0 evolves into a superposition of orthogonal terms
A0 |ψ0〉 + Aµi σ

µ
i |ψ0〉. In general, the coefficients A0,

Ai are operators acting on the bath degrees of freedom
and the state’s fidelity is given by F ≡ TrB (A†0A0ρB),
where the trace is taken over the bath degrees of freedom
with the density matrix ρB. With the same accuracy,
F is also the probability that the measurement returns
Gx = Gz = 1. For weak perturbation, and for times,t,
that are small compared to the bath correlation time τc,
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the infidelity 1−F scales quadratically with t. Thus fre-
quent projective measurements of the generators ensure
preservation of the wavefunction with high probability—
the quantum Zeno effect[43, 44]. At higher orders, there
will be errors spanning multiple qubits which may de-
crease the fidelity even with the circuit is formally suc-
cessful (measurements that yield Gx = Gz = 1), see
Figs. 6 and 7.

Using the constructed DD gates, we simulated the
encoding/decoding and ancilla-based stabilizer measure-
ment circuits (Figs. 4, 5), where we use standard quan-
tum circuit notations[56, 57]. A projective single-qubit
measurement is implemented simply as an instantaneous
projection to the |0〉 state of the ancilla.

3

such that the time interval for the free evolution
part (e−iπσzσz/4) is ∆t = π/Jz. Here, X(Y )j =

exp(−iπ4σ
j
x(y)) and X̄(Ȳ )j = exp(iπ4σ

j
x(y)). On the spin

chain, Xj and Yj are protected gate operations (similar
to that of fig.6) on the jth qubit.

Implementing the exp(−iπ4σ
(1)
z σ

(2)
z ) part of the CNOT

gate with the noise Hamiltonian, the constantly-on qubit-
qubit interaction and finite duration pulses is, however,
a lot less straight forward. We address this problem as
follows. The noise term can be suppressed by running
identical decoupling sequences at the same time on all
qubits during the free evolution interval, but this does
not decouple the interaction term. Hence the applied
pulses on mutually coupled qubits are shifted in time,
providing leading order DD, and in addition the self-
refocusing shaped pulses automatically provide 2nd order
DD [18, 21]. Expanding the pulses using time dependent
perturbation theory, the following expression can be ob-
tained

exp(−i2mJzτpσ(1)
z σ(2)

z ) = XeXo X̄eX̄o (4)

X̄oX̄e XoXe

where τp is the pulse width, m is the number of blanks
(which correspond to the free evolution period) used be-
tween XeXo and X̄eX̄o (m = 3 in Eq.5). Here Xe(o) in-
dicate π rotations along the x-direction for all even(odd)
channels. Hence for any given interaction, one can
obtain the following design equation to implement the

exp(−iπ4σ
(1)
z σ

(2)
z ) operation.

τp =
π

8mJzNrep
(5)

where Nrep is the number of times the sequence in Eq.5
is repeated. Larger Nreps improves the fidelity as it pro-
vides better decoupling, but also increases the cost in
terms of the number of pulses. For our calculations we
use Nrep = 5 and τp = 1. We use m = 4 free evolution
periods, during which time the DD pulses are introduced
to decouple neighboring qubits. The calculated CNOT
gate fidelity is shown in Fig.2-c and the corresponding
slopes are shown in Fig.2-d. The slope of about 6 at
large noise amplitudes indicates an excellent 2nd order
noise cancelation in the perturbative expansion.

QECC and QEDC encode quantum information into
multiple entangled qubits. This type of quantum encod-
ing also introduces the additional possibility of phase flip
errors (unlike the classical case, where one can only have
bit flip errors). Furthermore in the error detection state,
one can not know any thing about the state of any sin-
gle qubit as this would destroy to superposition. Instead
syndrome measurements are employed whereby auxillary
qubits or ancillas are introduced to detect errors.

Certain classes of quantum error correcting codes
can be represented in the stabilizer formalism, where

the codewords correspond to the +1 eigenstate of the
stabilizer-generators. Errors are detected if the received
quantum state correspond to the -1 eigenvalue wrt the
stabilizer.

The [4,2,2] quantum error detecting code (QEDC) is
a distance two code that encodes 2 logical qubits into
4 physical qubits and can detect 1 error. The stabilizer
generators for the [4,2,2] QEDC are G̃z = ZZZZ and
G̃x = XXXX. In general the choice of logical operators
is not unique. We choose the following logical operators
Z̃1 = ZZII, Z̃2 = IZIZ, X̃1 = IXIX and X̃2 = XXII.
The initial

∣∣0̃0̃
〉

code word is the +1 eigenstate of the
Hermitian operator

(I + G̃z)(I + G̃x)(I − Z̃1)(I − Z̃2)
∣∣0̃0̃
〉

=
∣∣0̃0̃
〉

(6)

The rest of the code words are generated by apply-
ing the logical X operators

∣∣0̃1̃
〉

= X̃2

∣∣0̃0̃
〉
,
∣∣1̃0̃
〉

=

X̃1

∣∣0̃0̃
〉
, and

∣∣1̃1̃
〉

= X̃1X̃2

∣∣0̃0̃
〉
. More explicitly,

the logical code words are (upto a factor of 1/
√

2)∣∣0̃0̃
〉

= |0000〉+ |1111〉,
∣∣0̃1̃
〉

= |0011〉+ |1100〉,
∣∣1̃0̃
〉

=

|0101〉+ |1010〉,
∣∣1̃1̃
〉

= |0110〉+ |1001〉

|0〉 H • • • |s1〉

|i1〉 • × × |s2〉

|0〉 × ×× |s3〉

|i2〉 • × × |0〉
|0〉 × |s4〉

FIG. 3: Encoding circuit implemented on a spin chain.

|s1〉 • H • H |s1〉

|s2〉 • 

 • H |s2〉

|s3〉 • • H • • H |s3〉

|0〉 • H • 

 |0〉

|s4〉 • H • H |s4〉

FIG. 4: Measurement circuit using a shuttling ancilla,
implemented on a spin chain. The ancialla is first shut-
tled up for the ZZZZ measurements and then shuttled
down for the XXXX measurement. This entire circuit
is repeated for every set of measurements.

Let ψ(0) be the representation for all sets of ini-
tial conditions being considered. The state of the sys-
tem after the measurement operator has been applied
is |ψ(t)〉′ = M̃0(1)|ψ(t)〉, where the instantaneous mea-

surement operator is defined as M̃ = M̃0 + M̃1, where

FIG. 4. Encoding circuit implemented on a spin chain using
four exchange gates (each implemented with three CNOTs),
five CNOT gates, and a Hadamard gate H. Input qubits i1,
i2 can be in an arbitrary two-qubit state, on the output the
circuit returns an equivalent linear combination of the states
in the code, see Eq. (6), using qubits sj , j = 1, . . . , 4, and
an ancilla initialized for the stabilizer measurement circuit in
Fig. 5. The decoding is done by reversing this circuit.

3

such that the time interval for the free evolution
part (e−iπσzσz/4) is ∆t = π/Jz. Here, X(Y )j =

exp(−iπ4σ
j
x(y)) and X̄(Ȳ )j = exp(iπ4σ

j
x(y)). On the spin

chain, Xj and Yj are protected gate operations (similar
to that of fig.6) on the jth qubit.

Implementing the exp(−iπ4σ
(1)
z σ

(2)
z ) part of the CNOT

gate with the noise Hamiltonian, the constantly-on qubit-
qubit interaction and finite duration pulses is, however,
a lot less straight forward. We address this problem as
follows. The noise term can be suppressed by running
identical decoupling sequences at the same time on all
qubits during the free evolution interval, but this does
not decouple the interaction term. Hence the applied
pulses on mutually coupled qubits are shifted in time,
providing leading order DD, and in addition the self-
refocusing shaped pulses automatically provide 2nd order
DD [18, 21]. Expanding the pulses using time dependent
perturbation theory, the following expression can be ob-
tained

exp(−i2mJzτpσ(1)
z σ(2)

z ) = XeXo X̄eX̄o (4)

X̄oX̄e XoXe

where τp is the pulse width, m is the number of blanks
(which correspond to the free evolution period) used be-
tween XeXo and X̄eX̄o (m = 3 in Eq.5). Here Xe(o) in-
dicate π rotations along the x-direction for all even(odd)
channels. Hence for any given interaction, one can
obtain the following design equation to implement the

exp(−iπ4σ
(1)
z σ

(2)
z ) operation.

τp =
π

8mJzNrep
(5)

where Nrep is the number of times the sequence in Eq.5
is repeated. Larger Nreps improves the fidelity as it pro-
vides better decoupling, but also increases the cost in
terms of the number of pulses. For our calculations we
use Nrep = 5 and τp = 1. We use m = 4 free evolution
periods, during which time the DD pulses are introduced
to decouple neighboring qubits. The calculated CNOT
gate fidelity is shown in Fig.2-c and the corresponding
slopes are shown in Fig.2-d. The slope of about 6 at
large noise amplitudes indicates an excellent 2nd order
noise cancelation in the perturbative expansion.

QECC and QEDC encode quantum information into
multiple entangled qubits. This type of quantum encod-
ing also introduces the additional possibility of phase flip
errors (unlike the classical case, where one can only have
bit flip errors). Furthermore in the error detection state,
one can not know any thing about the state of any sin-
gle qubit as this would destroy to superposition. Instead
syndrome measurements are employed whereby auxillary
qubits or ancillas are introduced to detect errors.

Certain classes of quantum error correcting codes
can be represented in the stabilizer formalism, where

the codewords correspond to the +1 eigenstate of the
stabilizer-generators. Errors are detected if the received
quantum state correspond to the -1 eigenvalue wrt the
stabilizer.

The [4,2,2] quantum error detecting code (QEDC) is
a distance two code that encodes 2 logical qubits into
4 physical qubits and can detect 1 error. The stabilizer
generators for the [4,2,2] QEDC are G̃z = ZZZZ and
G̃x = XXXX. In general the choice of logical operators
is not unique. We choose the following logical operators
Z̃1 = ZZII, Z̃2 = IZIZ, X̃1 = IXIX and X̃2 = XXII.
The initial

∣∣0̃0̃
〉

code word is the +1 eigenstate of the
Hermitian operator

(I + G̃z)(I + G̃x)(I − Z̃1)(I − Z̃2)
∣∣0̃0̃
〉

=
∣∣0̃0̃
〉

(6)

The rest of the code words are generated by apply-
ing the logical X operators

∣∣0̃1̃
〉

= X̃2

∣∣0̃0̃
〉
,
∣∣1̃0̃
〉

=

X̃1

∣∣0̃0̃
〉
, and

∣∣1̃1̃
〉

= X̃1X̃2

∣∣0̃0̃
〉
. More explicitly,

the logical code words are (upto a factor of 1/
√

2)∣∣0̃0̃
〉

= |0000〉+ |1111〉,
∣∣0̃1̃
〉

= |0011〉+ |1100〉,
∣∣1̃0̃
〉

=

|0101〉+ |1010〉,
∣∣1̃1̃
〉

= |0110〉+ |1001〉

|0〉 H • • • |s1〉

|ψ1〉 • × × |s2〉

|0〉 × ×× |s3〉

|ψ2〉 • × × |0〉
ancilla, |0〉 × |s4〉

FIG. 3: Encoding circuit implemented on a spin chain.

|s1〉 • H • H |s1〉

|s2〉 • 

 • H |s2〉

|s3〉 • • H • • H |s3〉

|0〉 • H • 

 |0〉

|s4〉 • H • H |s4〉

FIG. 4: Measurement circuit using a shuttling ancilla,
implemented on a spin chain. The ancialla is first shut-
tled up for the ZZZZ measurements and then shuttled
down for the XXXX measurement. This entire circuit
is repeated for every set of measurements.

Let ψ(0) be the representation for all sets of ini-
tial conditions being considered. The state of the sys-
tem after the measurement operator has been applied
is |ψ(t)〉′ = M̃0(1)|ψ(t)〉, where the instantaneous mea-

surement operator is defined as M̃ = M̃0 + M̃1, where

FIG. 5. Measurement circuit implemented on a spin chain
with a shuttling ancilla. The ancilla is first shuttled up for
the Gz measurement and then shuttled down for the Gx mea-
surement. The entire circuit is repeated for every Zeno cycle.

Samples of the simulation results are shown in Figs. 6
and 7 with the time axis starting at the end of the en-
coding (see Fig. 4). They show the time-dependence of
average infidelities (which assume that each syndrome
measurement returns the original “correct” value, Gx =
Gz = 1; only such results are preserved), and the accu-
mulated circuit success probability (fraction of preserved
data sets). These results are averaged over 20 instances
of classical correlated noise and with the syndrome mea-

surements alternating between Gx and Gz.
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FIG. 6. (color online) Infidelities during the Zeno cycle for
different noise correlation times but with the same noise am-
plitude σ = 10−3/τp. The different curves correspond to cases
where no pulses are applied (NP), DD pulses are applied but
no measurements are made (NM), and with the syndrome
measurements (WM). Closed and open symbols respectively
represent the infidelities during the syndrome measurements
and at the end of the final decoding. Note that the axis for
the cumulative success probability (SP) is on the right.
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FIG. 7. (color online) Same as Fig. 6 but with fixed noise
correlation time τc = 128τp with the r.m.s. noise amplitudes
σ as indicated.

It is clear that the dynamical decoupling and the Zeno
effect are both contributing to improving the fidelity, and
both get better with decreasing noise. This indicates
that the errors contributing to the infidelity of the con-
structed gates are not dominated by high-weight errors
which would be undetectable by the code[58].

The infidelity sharply increases with shorter noise cor-
relation times; this results from the asymmetry of the
DCGs, see Fig. 2. We have also constructed[58] sym-
metrized DCGs which give second-order decoupling for
arbitrary bath operators Bi when used with the pulses
constructed in Ref. 47; we expect such gates to have a
much better accuracy for smaller noise correlation time,
down to the gate duration, τc ≥ 32τp.
In conclusion, we implemented a universal set of

one- and two-qubit gates for a system with always-on
qubit coupling. The gates are based on DD techniques
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and have an added benefit of protection against low-
frequency phase noise.

One application of thus constructed gates is for imple-
menting toric codes on square lattice, where one sublat-
tice would be used for actual qubits, and the other sublat-
tice for ancillas. This way, measurement of the entire syn-
drome can be done in just two cycles, each of four CNOTs
in duration, plus some single-qubit gates. The same se-
quences would also work for an arbitrary quantum LDPC
code, if the couplings between the qubits and the ancil-
las form the corresponding Tanner graph[59]. In partic-
ular, for hypergraph-product and related codes[41, 42]
one can use the square lattice layout with additional
connections[60].
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[26] A. M. Souza, G. A. Álvarez, and D. Suter, Phys. Rev.
Lett., 106, 240501 (2011).

[27] J. A. Jones, Prg. Nucl. Mag. Res. Sp., 38, 328 (2001).
[28] E. M. Fortunato, M. A. Pravia, N. Boulant, G. Tekle-

mariam, T. F. Havel, and D. G. Cory, 10.1063/1.1465412
The Journal of Chemical Physics, 116, 7599 (2002).

[29] M. D. Price, S. S. Somaroo, A. E. Dunlop, T. F. Havel,
and D. G. Cory, Phys. Rev. A, 60, 2777 (1999).

[30] M. D. Price, S. S. Somaroo, C. H. Tseng, J. C. Gore,
A. H. Fahmy, T. F. Havel, and D. G. Cory, J. Mag.
Res., 140, 371 (1999).

[31] M. D. Price, T. F. Havel, and D. G. Cory, New J. Phys.,
2, 10 (2000).

[32] J. J. Vartiainen, A. O. Niskanen, M. Nakahara, and
M. M. Salomaa, Phys. Rev. A, 70, 012319 (2004).

[33] C. P. Slichter, Principles of Magnetic Resonance, 3rd
ed. (Springer-Verlag, New York, 1992).

[34] P. Sengupta and L. P. Pryadko, Phys. Rev. Lett., 95,
037202 (2005) .

[35] L. P. Pryadko and P. Sengupta, Phys. Rev. B, 73, 085321
(2006).

[36] M. Stollsteimer and G. Mahler, Phys. Rev. A, 64, 052301
(2001).

[37] Y. Tomita, J. T. Merrill, and K. R. Brown, New J.
Phys., 12, 015002 (2010).

[38] K. Khodjasteh and L. Viola, Phys. Rev. Lett., 102,
080501 (2009).

[39] M. S. Postol, (2001), unpublished, arXiv:quant-
ph/0108131v1.

[40] D. J. C. MacKay, G. Mitchison, and P. L. McFad-
den, IEEE Transactions on Information Theory, 59, 2315
(2004).

[41] J.-P. Tillich and G. Zemor, in 10.1109/ISIT.2009.5205648
Information Theory, 2009. ISIT 2009. IEEE Interna-
tional Symposium on (2009) pp. 799 –803.

[42] A. A. Kovalev and L. P. Pryadko, Information Theory
Proceedings (ISIT), 2012 IEEE International Symposium
on (2012) pp. 348–352, ISSN 2157-8095, arXiv:1202.0928.

[43] P. Facchi and S. Pascazio, Phys. Rev. Lett., 89, 080401
(2002).

[44] P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schul-
man, Phys. Rev. A, 65, 012108 (2002).

[45] W. S. Warren, J. Chem. Phys., 81, 5437 (1984).
[46] L. P. Pryadko and P. Sengupta, 10.1103/Phys-

RevA.78.032336 Phys. Rev. A, 78, 032336 (2008).
[47] S. Pasini, T. Fischer, P. Karbach, and G. S. Uhrig, Phys.

Rev. A, 77, 032315 (2008).
[48] L. P. Pryadko and G. Quiroz, Phys. Rev. A, 77,

012330/1 (2007).
[49] K. Khodjasteh and L. Viola, Phys. Rev. A, 80, 032314

(2009).
[50] K. Khodjasteh, D. A. Lidar, and L. Viola, Phys. Rev.



6

Lett., 104, 090501 (2010).
[51] G. Lindblad, Commun. Math. Phys., 48, 119 (1976).
[52] A. Galiautdinov and M. Geller, (2007), arXiv:quant-

ph/0703208v1.
[53] G. Guennebaud, B. Jacob, et al., Eigen v3,

http://eigen.tuxfamily.org (2010).
[54] M. Grassl, T. Beth, and T. Pellizzari, Phys. Rev. A,

56, 33 (1997).
[55] D. Gottesman, Stabilizer Codes and Quantum Error Cor-

rection, Ph.D. thesis, Caltech (1997).

[56] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Infomation (Cambridge Unive. Press,
Cambridge, MA, 2000).

[57] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,
N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and
H. Weinfurter, Phys. Rev. A, 52, 3457 (1995).

[58] A. De and L. P. Pryadko, (2012), unpublished.
[59] R. Tanner, Information Theory, IEEE Transactions on,

27, 533 (1981).
[60] A. A. Kovalev and L. P. Pryadko, (2012),

arXiv:1208.2317 .


