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We obtain a modified version of the Onsager regression relation for the expectation values of
quantum-mechanical operators in pure quantum states of isolated many-body quantum systems. We
use the insights gained from this relation to show that high-temperature time correlation functions
in many-body quantum systems can be controllably computed without complete diagonalization of
the Hamiltonians, using instead the direct integration of the Schroedinger equation for randomly
sampled pure states. This method is also applicable to quantum quenches and other situations
describable by time-dependent many-body Hamiltonians. The method implies exponential reduction
of the computer memory requirement in comparison with the complete diagonalization. We illustrate
the method by numerically computing infinite-temperature correlation functions for translationally
invariant Heisenberg chains of up to 29 spins 1/2. Thereby, we also test the spin diffusion hypothesis
and find it in a satisfactory agreement with the numerical results. Both the derivation of the modified
regression relation and the justification of the computational method are based on the notion of
quantum typicality.

PACS numbers:

In 1931, Onsager came up with the profound insight that “the average regression of fluctuations will obey the
same laws as the corresponding macroscopic irreversible process”1. This regression relation became the cornerstone
of the linear response theory. From today’s perspective, Onsager’s regression relation (ORR) is equivalent2,3 to the
high-temperature limit of the fluctuation-dissipation theorem4. In this paper, we show that a modified version of
ORR holds for the expectation values of quantum-mechanical operators, when a many-body system is in a pure
quantum state. We also present an efficient method for computing high-temperature linear response characteristics
of many-particle quantum systems using the time evolution of a single pure state.
There exists a class of nonperturbative problems, such as nuclear spin-spin relaxation in solids5, where the relaxation

or correlation functions in translationally-invariant systems need to be computed at high temperatures. Despite the
progress in the approximate methods, e.g.6,7, and numerical techniques8–11, the above kind of problems generally
resist controllable solutions, leaving the complete diagonalization of quantum Hamiltonians as the only way to obtain
controllable results. The sizes of the systems treatable by complete diagonalization are severely limited by the
computer memory requirement that scales as N2, where N is the number of quantum states in the system. The
memory requirement for the controllable-accuracy algorithm proposed in this work scales at most a N(logN)2.
In recent years, it was realized that, given the exponentially large number N of quantum states in a many-particle

system, many observable properties of such a system can be obtained by sampling one suitably chosen pure quantum
state, or a wave function — the so-called “quantum typicality”12–16. In particular, Refs.7,17–19 applied the notion of
quantum typicality to the relaxation and fluctuation phenomena, but on the numerical side these investigations dealt
so far only with the systems that were sufficiently small, so that a complete diagonalization of the Hamiltonian could
have been done, if desired.
In this paper, we report a conceptual and a computational results, which are both connected to the notion of typi-

cality but, otherwise, only indirectly connected to each other. The conceptual result is that the expectation values of
quantum-mechanical operators in a pure quantum state obey the usual regression relation but with the amplitude of
fluctuations exponentially reduced in comparison with the classical case (see Eq.(8) below). The computational result
is that the high-temperature time correlation functions of both local and extensive quantities can be controllably
computed on the basis of Eq.(9) without complete diagonalization of the Hamiltonians, using instead the direct inte-
gration of the Schrödinger equation for randomly sampled pure states. As an example, we obtain infinite-temperature
correlation functions for translationally invariant Heisenberg chains of up to 29 spins 1/2, thereby also testing the spin
diffusion hypothesys. To the best of our knowledge, none of the complete diagonalization studies of the Heisenberg
spin-1/2 chains conducted so far has reached the above size. We note here that pure quantum states were used in
Refs.20,21 in the context of other numerical methods.
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Below, in order to be specific, we consider a lattice of Ns interacting spins 1/2 with the total number of quantum
statesN = 2Ns ≫ 1 and the HamiltonianH. We adopt the following conventions: (i) Analytical formulas are presented
only in the leading order in 1/N . (ii) Wave functions without time argument and operators with time argument imply
the Heisenberg representation of quantum mechanics. The opposite implies the Schrödinger representation. (iii)
~ = 1.
We now focus on some observable quantity, e.g. total spin polarization, characterized by operator Â ≡ Amn, which

has zero average value at the infinite-temperature equilibrium, i.e. Tr{Â} = 0. The Onsager regression relation for
this quantity near the infinite temperature equilibrium has the following form:

Tr
{

Â(t)ρneq

}

=
α

N
Tr

{

Â(t)Â(0)
}

. (1)

where Â(t) = eiHtÂe−iHt, and ρneq = 1
N
exp(αÂ) with α being a small constant. The right-hand side (RHS) of Eq.(1)

represents the equilibrium time correlation function of Â, while the left-hand side (LHS) is the relaxation function of

Â corresponding to the initial nonequilibrium density matrix ρneq. A detailed discussion of Eq.(1) and its relation to
the fluctuation-dissipation theorem is given in Ref.22.
Quantum typicality investigation of Ref.18 implied that

〈Ψneq|Â(t)|Ψneq〉 = Tr
{

Â(t)ρneq

}

[

1 +O

(

1

α
√
N

)]

, (2)

where |Ψneq〉 is a wave function that “samples” ρneq.
Now we obtain a complementary relation on the fluctuation side. It involves the wave function |Ψeq〉 representing

the infinite temperature equilibrium and defined as a random vector in the Hilbert space of the system. |Ψeq〉 can be
generated in any orthonormal basis {|φk〉} as follows:

|Ψeq〉 =
N
∑

k=1

ak|φk〉, (3)

where ak are the quantum amplitudes, whose absolute values are selected from the probability distribution23,24

P (|ak|2) = N exp(−N |ak|2) (4)

and the phases are chosen randomly in the interval [0, 2π). In the following, we use bar above an expression to indicate
the Hilbert-space average over all possible choices on |Ψeq〉.
Now we consider the correlation function for the time series of the expectation value 〈Ψeq|Â(t′)|Ψeq〉 in the time

interval [−T0, T0 + t]:

C(t, T0) ≡
1

2T0

∫ T0

−T0

dt′〈Ψeq|Â(t+ t′)|Ψeq〉〈Ψeq|Â(t′)|Ψeq〉. (5)

In22, we derive the following relation:

C(t, T0) =
1

N2
Tr

{

Â(t)Â(0)
}

+∆1, (6)

where

∆2
1 ≈ 1

2
√
2 T0N4

∫ T0

√
2

−T0

√
2

dt2

(

[

Tr
{

Â(t2)Â(0)
}]2

+Tr
{

Â(t− t2)Â(0)
}

Tr
{

Â(t+ t2)Â(0)
}

)

. (7)

For large enough T0, the correction ∆1 in Eq.(6) is much smaller than the principal term as long as

Tr
{

Â(t)Â(0)
}

t→∞−−−→ 0. In particular, if Tr
{

Â(t)Â(0)
}

decays at large t faster than |t|−0.5 then, for large enough

T0, the integral in Eq.(7) becomes independent of T0, and, as a result, ∆1 = O(
√

τ/T0)Tr
{

Â2
}

/N2, where τ is the

characteristic timescale for the decay of the expression under the integral. If Tr
{

Â(t)Â(0)
}

decays asymptotically
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as |t|−ν with 0 < ν < 0.5, then, according to Eq.(7), ∆1 still remains small, but its prefactor scales as O(T−ν
0 ). The

condition Tr
{

Â(t)Â(0)
}

t→∞−−−→ 0 is overwhelmingly likely to be fulfilled for physical observables (local or extensive)

in generic nonintegrable quantum systems. However, the violation of this condition should be suspected and inves-
tigated on case-by-case basis in integrable systems or in disordered systems exhibiting tendency towards many-body
localization.
We note that the leading term in the RHS of Eq.(6) was obtained in Ref.19 for a slow Markovian variable Â with ex-

ponentially decaying correlation function. This result was based on the quantum ergodicity conjecture, which allowed
the authors to substitute the RHS of Eq.(5) with the Hilbert space average of 〈Ψeq|Â(t+ t′)|Ψeq〉〈Ψeq|Â(t′)|Ψeq〉. In
comparison, we directly derived both the leading term and the correction in Eq.(6) for a single realization of the time

series of 〈Ψeq|Â(t)|Ψeq〉 without relying on the ergodicity conjecture. In addition, our treatment does not restrict Â
to be a slow Markovian variable22.
Eq.(6) together with Eqs.(1,2) implies the modified version of ORR for the expectation value of the operator Â in

a pure quantum state:

lim
N→∞

〈Ψneq|Â(t)|Ψneq〉 = α lim
T0→∞,N→∞

NC(t, T0), (8)

where, in the RHS, the limit N → ∞ is taken first, which in practical terms means that T0 should be much smaller
than the inverse spacing of the energy levels in the system as the above limits are taken22.
From the viewpoint of practical computing, the implications of the above findings are two-fold: (i) As already

implicit in Eq.(2), and explicit in Eqs.(6,8), a single realization of 〈Ψneq|Â(t)|Ψneq〉 is exponentially more accurate

in approximating Tr
{

Â(t)Â(0)
}

than the corresponding single classical relaxation process in approximating classical

correlation function22. 〈Ψneq|Â(t)|Ψneq〉 decays into the equilibrium statistical noise 〈Ψeq|Â(t)|Ψeq〉, which, according
to Eq.(6) has root-mean-squared (rms) amplitude

√

C(0, T ) ≈
√

Tr{Â2}/N , which is by factor of
√
N smaller than

the rms amplitude

√

Tr{Â2}/N expected for the classical noise or the noise of continuously monitored macroscopic

quantum observable at infinite temperature22,25. This noise suppression is due to the fact that the time evolution of
a single pure state contains the superposition of N independent “noises” associated with each of the basis states17.
The statistical noise of 〈Ψneq|Â(t)|Ψneq〉 can be suppressed further by averaging over many pure-state evolutions. (ii)

In principle, as we show below, the direct evaluation of C(t, T ) can also be used to obtain Tr
{

Â(t)Â(0)
}

, but this

procedure does not take advantage of the above-mentioned quantum parallelism and hence is less efficient.

Although the evaluation of 〈Ψneq|Â(t)|Ψneq〉 is a very efficient method to obtain Tr
{

Â(t)Â(0)
}

, an even more

efficient method is to use typicality to sample this trace directly on the basis of the following relation anticipated in12

and derived in22:

〈Ψeq|Â(t)Â(0)|Ψeq〉 =
1

N
Tr

{

Â(t)Â(0)
}

+∆2, (9)

where

∆2
2 =

1

N2
Tr

{

Â(t)Â(0)Â(t)Â(0)
}

. (10)

That the second term in the RHS of Eq.(9) is much smaller than the first one can be shown by estimating their ratio

at t = 0 as

√

Tr{Â4}
Tr{Â2} ∼ 1√

N
. The statistical accuracy of computing Tr

{

Â(t)Â(0)
}

with the help of Eq.(9) is thus

better by factor 1/α in comparison with Eq.(2).
In Fig.1 we demonstrate the relationships (2, 6, 9) by computing the intermediate dynamic structure factor Iπ(t)

for the Heisenberg chain of 20 spins 1/2 using complete diagonalization. Thereby we also demonstrate the regression
relation (8). The Hamiltonian of this chain is H = J

∑

i Si · Si+1 with periodic boundary condition. Here J is the
coupling constant, and Si is the spin operator on the ith chain site. Such a chain admits periodic spin modulations
with wave numbers q = 2πn/Ns, where n is an integer number taking values 0, 1, ..., Ns− 1. For a given wave number
q, the intermediate dynamic structure factor is defined as

Iq(t) ∼= Tr
{

Â{q}(t) Â{q}(0)
}

, (11)
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FIG. 1: Intermediate dynamic structure factor Iπ(t) of the Heisenberg chain of 20 spins 1/2. The calculation based on the exact
trace formula (11) is compared with the approximations given by Eqs.(2,6,9) as indicated in the legend. The initial agrement
between the black and the green lines also demonstrates the validity of the regression relation (8). All calculations are based on
the complete diagonalization of the Hamiltonian H. Each of the three approximate calculations is done with a single pure state.
In the case of Eq.(2), α = 0.083 corresponding to the initial polarization equal to approximately 4 percent of the maximum
polarization. In the case of Eq.(6), T = 4200/J . As expected theoretically, the approximation based on Eq.(9) gives the most
accurate agreement with the exact result. (Note the logarithmic vertical scale.) The accuracy of all three approximations can
be improved by averaging over more pure states.

where Â{q} =
∑

m cos(qm)Sx
m.

Now, we proceed with showing that, for the spin systems too large to be treated by complete diagonalization, it is
still possible to controllably compute infinite temperature correlation functions by evaluating the LHS of Eq.(9) with
the help of the direct integration of the Schrödinger equation.
We compute the time evolution of pure states on the basis of the time-discretized version of the Schrödinger equation.

We use the fourth-order Runge-Kutta routine26 based on the following equation:

|Ψ(t+∆t)〉 = |Ψ(t)〉+ |v1〉+ |v2〉+ |v3〉+ |v4〉, (12)

where ∆t is the discretization time step, and |v1〉, |v2〉, |v3〉, |v4〉 are unnormalized Hilbert-space vectors computed as
follows: |v1〉 = −iH|Ψ(t)〉∆t, |v2〉 = − 1

2
iH|v1〉∆t, |v3〉 = − 1

3
iH|v2〉∆t, and |v4〉 = − 1

4
iH|v3〉∆t. Given the linearity of

the Schrödinger equation, Eq.(12) is equivalent to the simple 4th order power-series expansion of the time-evolution
operator at each discretization time step. We used ∆t = 0.01/J
The above routine requires only storing in the memory the vectors |Ψ〉 and |vi〉 and the non-zero elements of the

Hamiltonian H. Although the Hamiltonian is an N ×N matrix, it is very sparse for many-particle systems with only
two-particle interactions when represented in a “local” basis, where each basis function is factorizable in terms of the
wave functions of individual particles. For Ns spins 1/2, a possible local basis is the one where the z-projections of
all spins are quantized. In this basis, the number of the nonzero entries of the Hamiltonian matrix is of the order of
N × N2

s for the systems with long-range interactions, or N × Ns for the short range interactions. Thus the overall
memory required for the direct propagation of the Schroedinger equation scales at most as N(logN)2, i.e. it is
exponentially smaller than the memory required for the complete diagonalization, which scales as N2. One can take
advantage of this memory reduction only when the operator of interest, Â, is also sparse in the local basis, but this is
normally the case in physical contexts. In fact, in many cases, including the calculations of Iq(t), it is possible simply

to use the eigenbasis of Â as the local basis.
We verify the accuracy of the direct integration method in two ways. For small spin clusters, we compare the wave

functions obtained by propagating the same initial state using either complete diagonalization or the direct integration
method. As shown in Fig. 2(a), the overlap between the two wave functions remains extremely close to 1 over the
time interval required to compute Iπ(t) for 20 spins 1/2 in Fig. 1. For larger systems, we compare two wave functions
|Ψ1(t)〉 and |Ψ2(t)〉 obtained by propagating the same initial wave function using the direct integration method with
two different discretization time steps ∆t1 and ∆t2 such that ∆t2 = 2∆t1. We then verify that that their overlap
〈Ψ1(t)|Ψ2(t)〉 is sufficiently close to 1. An example of such a test for 29-spin Heisenberg chain is shown in Fig. 2(b).
We note here that the same direct integration algorithm can be used to compute the imaginary-time evolution

associated with the expression exp(−Hβ/2)|Ψeq〉, where β is the inverse temperature, thereby generating equilibrium
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FIG. 2: Tests of numerical accuracy of the direct integration of the Schrödinger equation. (a) Overlap between two initially
identical wave functions for the Heisenberg chain of 20 spins 1/2, |ΨEx(t)〉 and |ΨRK4(t)〉, computed using, respectively,
the complete diagonalization and the direct integration. (b) Overlap between two initially identical wave functions for the
Heisenberg chain of 29 spins 1/2, |Ψ1(t)〉 and |Ψ2(t)〉, both computed using the direct integration method with two respective
discretization time steps ∆t1 = 0.01/J and ∆t2 = 0.02/J . The noisiness of the line originates from the accumulated machine
rounding errors.
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FIG. 3: Intermediate dynamic structure factors Iq(t) for Heisenberg chains of Ns spins 1/2 computed as the LHS of Eq.(9)
by propagating a single pure state with the help of the direct integration of the Schrödinger equation. The values of Ns are
indicated in the plot legend. In each case, q = 2π/Ns. The horizontal axis is: (a) f(Jt) = Jt, (b) f(Jt) = ξ1 q2t, and (c)
f(Jt) = ξ2 q2 (1 + 0.1 lnq) tlnt, where ξ1 and ξ2 are arbitrary scaling parameters. The vertical axes for (b) and (c) are displaced
for better visibility. Plots (a) represent the original calculation results. Plots(b) test the scaling expected for spin diffusion.
Plots (c) test the empirical scaling reported for classical spins in Ref.27. The numerical accuracy test for the pure state evolution
in the case of the 29-spin chain is given in Fig. 2(b).

wave function corresponding to temperature 1/β. This wave function can then be used to compute the linear response
characteristics at temperature 1/β.

Our numerical procedure for computing 〈Ψeq|Â(t)Â(0)|Ψeq〉 is based on propagating two wave functions using the
direct integration method7. One of them is |Ψeq(t)〉 = exp(−iHt)|Ψeq(0)〉, where |Ψeq(0)〉 is given by Eq.(3). The

other one is |Φ(t)〉 = exp(−iHt)|Φ(0)〉, where |Φ(0)〉 = Â|Ψeq(0)〉 (i.e. |Φ(0)〉 is unnormalized). The quantity of

interest 〈Ψeq|Â(t)Â(0)|Ψeq〉 is then evaluated as 〈Ψeq(t)|Â|Φ(t)〉.
Now we exemplify the direct integration method by computing the intermediate dynamic structure factors Iq(t)

with q = 2π/Ns for Heisenberg chains of sizes up to Ns = 29. By doing this calculation, we also test the spin diffusion

hypothesis, which stipulates that, for sufficiently small values of q, Iµq (t) ≈ e−Dq2t, where D is the diffusion coefficient.
Our results presented as plots (a) in Fig.3 indicate that, in every case, Iq(t) shows the initial tendency to decay

exponentially, but then the behavior universally starts exhibiting oscillations. Plots (b) in the same figure further
indicate that the nearly exponential parts of Iq(t) exhibit satisfactory q2-scaling, while plots 2(c) show that the scaling
q2(1 + 0.1 lnq)lnt reported in the numerical studies of classical spins27 works even better. Overall, the above results
appear to be consistent with recent investigations28,29 suggesting that the isotropic Heisenberg chain of spins 1/2 is
the border case for the transition between ballistic and diffusive behavior.
To summarize, we obtained the modified Onsager regression relation (8) for a pure quantum state. We also find that

the direct computation of the LHS of Eq.(9) is the most efficient way to obtain equilibrium time correlation functions
with controllable accuracy. We have directly tested only the high-temperature limit but the method itself can also be
used at finite temperatures. We further note that the direct integration of the Schrödinger equation in combination
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with the random sampling of pure states can also be used for the efficient computing of quantum quenches and other
situations describable by time-dependent many-body Hamiltonians.
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