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Symmetry protected topological (SPT) states are short-range entangled states with symmetry.
Nontrivial SPT states have symmetry protected gapless edge excitations. In 2-dimension (2D), there
are infinite number of nontrivial SPT phases with SU(2) or SO(3) symmetry. These phases can
be described by SU(2) or SO(3) nonlinear-sigma models with a quantized topological θ-term. At
open boundary, the θ-term becomes the Wess-Zumino-Witten term and consequently the boundary
excitations are decoupled gapless left movers and right movers. Only the left movers (if θ > 0)
carry the SU(2) or SO(3) quantum numbers. As a result, the SU(2) SPT phases have a half-integer
quantized spin Hall conductance and the SO(3) SPT phases have an even-integer quantized spin
Hall conductance. Both the SU(2) and SO(3) SPT phases are symmetric under their U(1) subgroup
and can be viewed as U(1) SPT phases with even-integer quantized Hall conductance.

PACS numbers: 75.10.Jm 73.43.Cd

Gapped quantum states may belong to long-range en-
tangled (LRE) phases or short-range entangled (SRE)
phases.[1] LRE states have intrinsic topological order and
can not be deformed into direct product states through fi-
nite steps of local unitary transformations. Examples of
intrinsic topologically ordered phases include fractional
quantum Hall liquids[2, 3], chiral spin liquids[4, 5], and
Z2 spin liquid.[6–8] On the other hand, SRE states are
equivalent to direct product states under local unitary
transformations. If there is no symmetry, there will be
only one SRE phase. If the system has a symmetry, the
phase diagram will be much richer. Even SRE states
which do not break any symmetry can belong to differ-
ent phases. Those phases are called SPT phases which
stands for symmetry protected topological phases or sym-
metry protected trivial phases. The well known Haldane
phase in S = 1 spin chain[9, 10] is the first example of
bosonic SPT phase in 1D, which is protected by either
D2 spin rotation symmetry or time reversal symmetry.
Topological insulators[11–15] are 2D SPT phases in free
fermion systems protected by time reversal symmetry T
and U(1) charge conservation symmetry.

Some thought that the topological insulators are char-
acterized by quantum spin Hall effect.[16] However, since
spin rotation symmetry is broken by spin-orbital cou-
pling, spin angular momentum is not conserved. There-
fore, there is no spin Hall effect in usual topological in-
sulators. Quantum spin Hall effect will be present only
if the topological insulators also have an extra U(1) spin
rotation symmetry.[17]

In this letter, we will introduce another kind of SPT
phases – SU(2) or SO(3) SPT phases in 2D, which are
classified by Z. In contrast to topological insulators,
these phases are interacting bosonic phases. Owning to
the SU(2) or SO(3) symmetry, if the system is open, the
boundary excitations will be gapless although the bulk
remains gapped. Importantly, different SPT phases can

be distinguished experimentally through their linear re-
sponses. To this end, we couple the model to external
probe field, which is an analogue of the electromagnetic
field for spins. We show that spin Hall current will be
induced on the boundary with a quantized spin Hall con-
ductance. Different SU(2) SPT phases are characterized
by their different half-integer quantized spin Hall conduc-
tance, while different SO(3) SPT phases by even-integer
quantized spin Hall conductance.
SU(2) principal chiral NLSM. In 2D, SU(2) SPT

phases are classified by group cohomology class
H3(SU(2), U(1)) = Z [18]. Owning to the correspon-
dence between the group cohomology class and the topo-
logical cohomology class [19], each SPT phase can be de-
scribed by a principal chiral NLSM with quantized topo-
logical θ-term [which is classified by H3(SU(2), Z) = Z

]. The θ-term of the NLSM can be written as[20],

Stop = −i
θ

24π2

∫

M

Tr(g−1dg)3, g ∈ SU(2) (1)

whereM is the Euclidian space-time manifold, g ∈ SU(2)
is a 2× 2-matrix-valued function of space-time g(x), and
θ = 2πK with K ∈ Z corresponding to the Kth SU(2)
SPT phase. When M has no boundary, Stop is quantized
into integer times of −2πi.
Including the dynamic part, the partition function of

the NLSM is Z =
∫

Dge−
∫
M

d3xL, where L is the La-
grangian density,

L = −
1

4λ2
Tr[(g−1∂µg)(g

−1∂µg)]

−i
K

12π
Tr(εµνγg−1∂µgg

−1∂νgg
−1∂γg). (2)

For large enough λ2, the renormalization flows to a fixed
point where only the topological term remains (λ2 flows
to infinity). The fixed point Lagrangian captures all the
physical properties of the SPT phases. So we will focus
on the fixed point in the following discussion.
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Since symmetry group is of crucial importance for
the physical properties of SPT phases, we stress that
the symmetry group of our system is SU(2)L, under

which the group element g varies as g → ĥg = hg for
ĥ ∈ SU(2)L. It is easy to check that the Lagrangian
Eq. (2) is invariant under SU(2)L. It can be shown that
Eq. (2) has a larger symmetry, it is invariant under the
group SU(2)L×SU(2)R, where SU(2)R is the right mul-

tiplying group defined as ˆ̄hg = gh−1, ˆ̄h ∈ SU(2)R. Fur-
thermore, Eq. (2) also has time reversal symmetry T .
Namely, it is invariant under the time reversal transfor-
mation, t → −t, i → −i (consequently τ → τ), and
g → g−1 [21]. The SPT phases only need the protec-
tion of SU(2)L. As will be discussed later, if the ex-
tra symmetry SU(2)R and T is removed by perturba-
tion δL = Tr[∂τgM(x)g−1] with M(x) external field,
the physical properties of the SPT phases remains un-
changed. In the following we will discuss the Lagrangian
Eq. (2) and note SU(2)L as SU(2) without causing con-
fusion.

If the system has a boundary, the quantized θ-
term Eq. (1) becomes the Wess-Zumino-Witten (WZW)
term[22, 23] in the 1+1D boundary effective theory.
According to Ref. 24, a 1+1D WZW model with
given K may flow to a gapless fixed point Sbdr,fix =
|K|
8π

∫

dx0dx1Tr[(g−1∂µg)(g
−1∂µg)]+Stop, where Stop are

defined in Eq. (1), x0 = τ is the imaginary time and x1

is the spacial dimension along the boundary.

If K > 0, the boundary excitations at the fixed point
are decoupled left mover J+ = K

2π
∂+gg

−1 and right mover

J− = −K
2π
g−1∂−g, where x

± =
√

1
2
(x0±ix1) is the chiral

coordinate and ∂± =
√

1
2
(∂0 ∓ i∂1). J± satisfy the equa-

tion of motion ∂∓J± = 0 (which yields gapless disper-
sion). Importantly, J+ and J− behave differently under
global SU(2) transformation g → hg. The current J−
is SU(2) invariant J− → J−, but J+ is SU(2) covariant
J+ → hJ+h

−1. So only the left mover J+ carries SU(2)
‘charge’. This property indicates that the gapless bound-
ary excitations are protected by the SU(2)L symmetry,
because the mass term, such as Lbdr,mass ∝ (Trg)2 [25],
which gaps out the excitations will mix the left mover
and right mover and hence breaks the SU(2)L symme-
try. The bulk perturbation δL = Tr[∂τgM(x)g−1], on
the other hand, will not cause scattering between the left
mover and the right mover since it respects SU(2)L sym-
metry, hence it will leave the boundary excitations gap-
less. Under time reversal T , J+ and J− exchange their
roles J+ ↔ J−. If K < 0, then the boundary excitations
will be redefined as J+ = − K

2π
g−1∂+g, J− = K

2π
∂−gg

−1.
In this case, J+ is SU(2) neutral and J− carries SU(2)
charge.

Following Ref. 24, the boundary excitations of the
SU(2) SPT state labeled by K are described by SU(2)
Kac-Moody algebra of level |K|. In the following we will

study how the system (especially the boundary) respond
to an external probe field. Without loss of generality, we
assume K > 0.
Quantized spin Hall conductance. Now we introduce

an external prob field A, which minimally couples to the
topological NLSM by replacing every g−1∂µg term with
g−1(∂µ + Aµ)g. Expanding A by three Pauli matrices,
A = 1

2

∑

µ,aA
a
µσ

adxµ, then we can define a current den-

sity operator Ja
µ = δL

δAa
µ
|Aµ=0 with

Ja
µ = −

1

2λ2
Tr(∂µgg

−1σ
a

2
) + i

K

4π
εµνγ∂γ

[

Tr(∂νgg
−1σ

a

2
)

]

.

Ja
µ is the conserved spin current corresponding to the

global SU(2) invariance of the action. The second term
on the right hand side contributes a boundary current
since it is a total differential.
At the fixed point λ2 → ∞, only the topological term

remains,

− i
K

12π
Tr[ g−1 (d+A)g]3 = −i

K

12π
Tr[(g−1dg)3 +A3

+3(dgg−1 ∧ F ) + 3d(dgg−1 ∧ A)]. (3)

Notice that Eq. (3) is invariant under local SU(2) trans-
formation g → hg, if the field A varies as A→ hAh−1 +
hdh−1. If F = 0, then A only couples to the edge cur-
rent via Tr(dgg−1∧A). Notice that only the right moving
component J+ occurs in dgg−1. This means that A only
couples to J+ and does not couple to J−. When F 6= 0,
the bulk term 3Tr(dgg−1 ∧ F ) in Eq. (3) is difficult to
treat. In order to obtain an effective field theory of the
external field A and F , we need to integrate out the group
variables g.
To avoid this difficulty, we take the advantage of the lo-

cal ‘gauge invariance’ of the Lagrangian in Eq. (3). Here
the local ‘gauge transformation’ is defined as g → h(x)g
and A → hAh−1 + hdh−1. When integrating out the
group variables, the effective action of A should also be
‘gauge’ invariant. So we expect the result is the Chern-
Simons action (we will see later that this effective action
is self-consistent),

Seff(A) = i
K

4π

∫

M

Tr(A ∧ F −
1

3
A3),

= i
K

8π

∫

M

d3xεµνλ(Aa
µ∂νA

a
λ + εabc

i

3
Aa

µA
b
νA

c
λ),

where A =
∑

aA
a
µdx

µ σa

2
. Notice that the trace

Tr(σa

2
σb

2
) = 1

2
δab contributes an extra coefficient 1

2
. If

F = 0, Seff(A) = −i K
12π

∫

TrA3, which is consistent with
Eq. (3). From above effective action, we obtain the re-
sponse current density,

J a
µ =

δSeff

δAa
µ

= i
K

4π
εµνλ(∂νA

a
λ +

i

2
εabcA

b
νA

c
λ). (4)
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It will be easier to see the response of the system
if the probe field A only contains spin-z component,
A =

∑

µA
z
µ
σz

2
dxµ, which can be viewed as the spin-

electromagnetic field that couple to Sz as its ‘charge’.
Then the responding spin density is proportional to the
‘magnetic field’,

J z
0 = i

K

4π
(∂1A

z
2 − ∂2A

z
1) = i

K

4π
bz,

here we use 0, 1, 2 to label the space-time index and x, y, z
to label the spin direction. The spin current is propor-
tional to the ‘electric field’,

J z
1 = i

K

4π
(∂2A

z
0 − ∂0A

z
2) =

K

4π
ez2,

J z
2 = i

K

4π
(∂0A

z
1 − ∂1A

z
0) = −

K

4π
ez1.

The direction of the motion of the spin current is orthog-
onal to the direction of the ‘electric field’. This is nothing
but a spin Hall effect. Furthermore, the spin Hall con-
ductance is quantized as K

4π
, which is half of the electric

integer charge Hall conductance. From these informa-
tion, we conclude that the SU(2) symmetric topological
NLSM model describes a bosonic spin quantum Hall sys-
tem.
The SU(2) SPT phases can also be viewed as U(1) SPT

phases, where U(1) is the Sz spin rotation. The above
result implies that the U(1) SPT phases are character-
ized by a quantized Hall conductance. To understand
the value of quantization, let us introduce Ac

µ = 1
2
Az

µ.
The ‘charge’ that Ac

µ couples to is 2Sz which is quan-
tized as integers. The effective action for Ac

µ is given

by Seff(A
c) = i K

2π

∫

M
d3xεµνλAc

µ∂νA
c
λ. We see that the

‘charge’ Hall conductance is 2K
2π

. In other words, the
Hall conductance for the U(1) SPT phases is quantized
as even integers 2K (in unit of 1

2π
), which agrees with a

calculation by U(1)×U(1) Chern-Simons theory.[26, 27]
In electric integer quantum Hall system, the boundary

excitations are chiral currents. In contrast, the boundary
of model (1) contains both left-moving and right moving
gapless excitations. However, only the left mover carries
SU(2) charge and couples to the probe field A. In other
words, the A field will induce left moving spin current.
The coupling of the left moving current to A field is

consistent with the Chern-Simons action. Remember-
ing that the topological term (3) is local ‘gauge invari-
ant’. If space-time is closed, the effective action (4) is
gauge invariant as expected. However, if space-time has
a boundary, Eq. (4) is no longer gauge invariant. Under
local gauge transformation A → A′ = hAh−1 + hdh−1,
the variance of the Chern-Simons term is

Seff(A
′)− Seff(A) = i

K

4π

[
∫

∂M

Tr(h−1dh ∧A)

+

∫

M

1

3
Tr(h−1dh)3

]

. (5)

The first term on the right hand side depends on the
values of A on the boundary, and the second term is
independent on A.
Since the gauge anomaly in Eq. (5) is purely a bound-

ary term, it can be canceled by a matter field on the
boundary described by SU(2) level-|K| Kac-Moody al-
gebra. To see the cancelation of the anomaly, we may
embed the SU(2) level-|K| Kac-Moody algebra into |K|
spin-1/2 complex fermions ψI , (I = 1, 2, ...,K), which
leads to the following effective edge theory

Sbdr(ψ,A) =

∫

dx0dx1
K
∑

I=1

[ ψ†
I−(∂0 − i∂1)ψI−

+ψ†
I+[(∂0 +A0) + i(∂1 +A1)]ψI+

]

.

Under gauge transformation ψ′
+ = hψ+, A

′ = hAh−1 +
hdh−1, above action has an anomaly[28, 29](for details,
see the supplemental material) Sbdreff(A

′)−Sbdreff(A) =
−iK

4π

∫

∂M
Tr(h−1dh ∧ A), which exactly cancel the

anomaly of the Chern-Simons action in Eq. (5). This
means that the total action of bulk Chern-Simons term
and the boundary fermion term is gauge invariant (up to
a term which is independent on A).
Since we have K flavors of fermion fields, they also

form a representation of U(K) Kac-Moody algebra,
which gives rise to extra gapless edge modes. However,
only the representation of SU(2)K-Kac Moody algebra
are physical degrees of freedom in our model. The extra
gapless modes can be gapped out by mass terms which
do not break the SU(2) symmetry, or can be removed
by performing a projection onto the U(k) singlet at each
site.[30]
Supposing Ā is the time reversal partner of A, then

under T transformation, ∂τ → ∂τ , i → −i, g → g−1,
Aµ → Āµ, the Lagrangian (3) becomes

i
K

12π
Tr[g(d + Ā)g−1]3 = −i

K

12π
Tr[(g−1dg)3 − Ā3

+3(g−1dg ∧ F̄ ) + 3d(g−1dg ∧ Ā)]

where F̄ = dĀ+ Ā∧ Ā. From above equation, we can see
that Ā only couples to J−, which carries SU(2)R charge
and is SU(2)L neutral. Thus the time reversal operation
T transforms the SU(2)L quantities A and J+ to the
SU(2)R quantities Ā and J−. This is very different from
the model with −K, where the right mover J− carries
SU(2)L charge and is coupling to A.
SO(3) SPT phase in 2+1D. Above we discussed a

bosonic spin-1/2 model with quantized spin Hall effect.
However, a bosonic particle can never carry spin-1/2. So
the SU(2) SPT phases only have theoretical interest. In
the following, we will discuss a more realistic bosonic
model of integer spins, whose symmetry group is SO(3),

Stop = −i
2πK

2× 48π2

∫

M

Tr(g−1dg)3, g ∈ SO(3). (6)
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Here g ∈ SO(3) is a 3×3 matrix, andK ∈ Z is an element
of the cohomology H3(SO(3), Z) = Z which is generated
by 1

48π2

∫

G
Tr(g−1dg)3. The factor 2 in the denominator

of Eq. (6) is owing to the factor that closed space-time
manifold (e.g. M = S3) must cover the group manifold
G = S3/Z2 even times.
Above topological action (6) should be quantized to

integer times of −2πi, even if M is the group mani-
fold itself. To satisfy this condition, K must be an
even integer. In other words, only even K belongs to
H3(SO(3), Z) = Z. Furthermore, only K = 4r, r ∈ Z

give rise to SPT phases. The mathematical reason is that
the map from the group cohomology H3(SO(3), U(1)) to
topological cohomology H3(SO(3), Z) is not onto, only
even elements of the latter (namely K = 4r) have coun-
terparts of the former [19, 31].
The physical reason that K must be 4r is the fol-

lowing. We consider space-time with S1 × Σ topol-
ogy, but in the limit where the spacial circle S1 has
a very small size. Let us consider the field configura-
tion g(xµ) where S1 maps to the non-trivial element in
π1[SO(3)] = Z2: g(x

µ) = eiθn̂·L where θ parameterize
the S1 and Lx, Ly, Lz are the generators of SO(3) group.
In the small S1 limit, such field configuration is described
by the mapping from the space-time Σ to S2 labeled by
the unit vector n̂. Physically, this means that the small
S1 limit, Stop can be viewed as the topological θ-term
in the NLSM of unit vector n̂ with θ = 2πK, since if Σ
wrap around S2 once, g(xµ) = eiθn̂·L will wrap around
SO(3) twice. In the small S1 limit the space becomes
a thin torus (or a cylinder if it is open) and the sys-
tem becomes an effective 1D system. We also note that
g(xµ) → hg(xµ)h−1, h ∈ SO(3) rotate the unit vector n̂.
Such an SO(3) rotation give rise to an isospin quantum
number Siso = SL + SR, where SL is the spin operator
associated with SOL(3) and SR with SOR(3). The topo-
logical θ-term with θ = 2πK implies that an open end
of the 1D system will carry isospin-K

2
.[32] This means

that a Z2 vortex (which exists since π1[SO(3)] = Z2)
will carry isospin-K

2
. In Ref. 31, it is shown that such

a Z2 vortex (corresponding to the twisted sector in Ref.
31) carries (SL, SR) spins given by (m+ 1

2
, K

2
−m− 1

2
),

m = integer, if K = 4r + 2; and by (m, K
2
− m), m =

integer, if K = 4r. Thus a Z2 vortex carries the physical
spin (i.e. the SL spin) given by half integers if K = 4r+2
and by integers ifK = 4r. Z2 vortex carrying half-integer
spins can happen in the continuous field theory, since the
Z2 vortex is non-trivial in continuous field theory. How-
ever, SPT phases are defined on lattice models where
space-time are discrete. In this case, the Z2 vortex can
continuously deform into a trivial configuration. Thus
the vortex core must be ‘trivial’ and can only carry an
integer spin. Consequently only K = 4r correspond to
SPT phases.
Except for the constrains of the level K = 4r, the

remaining discussion is very similar to that of SU(2)

model. We couple the SO(3) NLSM with an external
probe field A, g → hg, A→ hAh−1 + hdh−1. Owning to
this local gauge invariance, we expect that the effective
action for A is a Chern-Simons term (plus a boundary
action), Seff(A) = i K

16π

∫

M
Tr(A ∧ F − 1

3
A3). We can ex-

pand A =
∑

aA
aLa, a = x, y, z, where Lx, Ly, Lz satisfy

[La, Lb] = iεabcLc and Tr(LaLb) = 2δab. Suppose A
is collinear and only contains the z-components in spin
space, then we obtain the response spin current density,
J z
µ = δS

δAz
µ
= iK

4π
ǫµνλ∂νA

z
λ. The spin Hall conductance is

quantized as K
4π

(the same as the SU(2) case).
We may embed the edge effective theory into K/2-

flavor free Majorana fermion model,

Sbdr(ψ,A) =

∫

∂M

dx0dx1
k

∑

I=1

[

ψ̃I−(∂τ − i∂σ)ψ̃I−+

ψ̃I+[(∂τ +Aτ ) + i(∂σ +Aσ)]ψ̃I+

]

,

where ψ̃I is a SO(3) triplet Majorana fermion field and
k = K/2 is the level of SO(3) Kac-Moody algebra. The
anomaly of the boundary action cancels the anomaly of
the bulk Chern-Simons term. The field A induces a left
moving spin current on the edge. Again, the extra O(k)
gapless modes can be gapped out by a mass term which
does not break the SO(3) symmetry, or can be removed
by a projection onto a O(k) singlet per site.
We may also view the SO(3) SPT phases as U(1) SPT

phases. From the spin Hall conductance K
4π

of the SO(3)
SPT phases and the fact that K = 4r, we see that the
U(1) SPT phases have an even-integer quantized Hall
conductance (in units of 1

2π
).

Conclusion and discussion. In summary, we study
SU(2) and SO(3) symmetry protected topological phases
via topological NLSM. These phases have spin quan-
tum Hall effect when they are coupled to external probe
fields. The gapless boundary excitations are decoupled
left movers and right movers, which are protected by
symmetry. When K > 0, only the left moving cur-
rent carries symmetry charge, and can be detected by the
probe field. The spin Hall conductance quanta of SO(3)
models is 4 times as large as that of the SU(2) models.
We also find that the U(1) SPT phases are characterized
by an even-integer quantized Hall conductance.
It has been shown that different 2D SPT states with

symmetry G are described by Borel group cohomol-
ogy H3[G,U(1)].[18] In this paper we show that [for
G = SU(2), SO(3)] if we “gauge” the symmetry group,
the resulting theory is a Chern-Simons theory with gauge
group G which is also classified by H3[G,U(1)] [19]. This
suggests a very interesting one-to-one duality relation be-
tween 2D SPT phases with symmetry G and 2D Chern-
Simons theory with gauge group G, for both continuous
and discrete groups G.[33] This also suggests that, when
we probe the SPT states by “gauging” the symmetry, we
can distinguish all the SPT states.
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