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We analyze the Landau level (LL) structure in a MoS2 trilayer and find a field-dependent uncon-
ventional Hall plateau sequence ν = · · · −2M−6, −2M−4, −2M−2, −2M−1, · · · , −5, −3, −1, 0,
2, 4 · · · . Due to orbital asymmetry, the low-energy Dirac fermions become heavily massive and the
LL energies grow linearly with B, rather than with

√
B. Spin-orbital couplings break spin and valley

degenerate LL’s into two groups, with LL crossing effects present in the valence bands. In a p-n
junction, spin-resolved fractionally quantized conductance appears in two-terminal measurements
with a controllable spin-polarized current that can be probed at the interface. We also show the
tunability of zero-field spin Hall conductivity.

PACS numbers: 73.43.-f, 71.70.Di, 72.25.Mk, 75.76.+j

Introduction.— Successful isolation of a single molyb-
denum disulfide (MoS2) trilayer presents a new platform
to explore interesting two dimensional (2D) electronic
physics [1–4]. The honeycomb lattice structure of a MoS2

trilayer (when viewed from the top) and its low-energy
Dirac physics are reminiscent of graphene [5]. Indeed, the
MoS2 trilayer exhibits advantages over graphene in sev-
eral areas of intense recent interest, specifically, whether
this 2D material has an energy gap [6–8] and whether it
has substantial spin-orbit couplings (SOC) [9–11]. Unfor-
tunately, the answers for graphene to date are still not
satisfactory, even though tremendous efforts have been
made to improve the possibilities [12, 13].

When the layered compound MoS2 is thinned down to
a single trilayer, it departs from an indirect gap material
to a direct gap material [2, 3, 14–17]. Additionally, some
density functional theory (DFT) calculations have shown
that there exists large SOC in MoS2 [18–20]. The exis-
tence of a large energy gap and strong SOC may place
this newly discovered 2D platform ahead of graphene in
the race for the next generation of semiconductors. More
recently a MoS2 transistor with room-temperature mo-
bility about 200 cm2/(V·s) has already appeared [4].

In this Letter, for the first time, we analyze how SOC
influences the Landau level (LL) spectrum of massive
Dirac fermions and how to increase the spin Hall ef-
fect in a MoS2 trilayer. We find that the Hall plateau is
field-dependent and follows an unconventional sequence
that has an even–odd–even transition. The LL ener-
gies grow linearly with B, and the spin and valley de-
generate LL’s are broken into two groups with definite
spin-valley couplings. The broken symmetry in the va-
lence band also gives rise to LL crossing effects, leading
to the enhancement of longitudinal magnetoresistance.
We further investigate the case of a p-n junction, where
spin-resolved fractionally quantized conductance appears
in two-terminal measurements, with a controllable spin-
polarized current that can be probed at the interface by
STM. We also explicitly show how to tune and increase
the zero-field spin Hall conductivity by reducing the in-

version asymmetry. None of these unconventional band-
structure effects has been observed in other Dirac fermion
systems, even with the help of e-e interactions.

Continuum theory.— We start from a description of
the low-energy model of an isolated MoS2 trilayer, which
applies generally to other group-VI dichalcogenides with
the same crystal structure. The top and bottom S layers
and the middle Mo layer are parallel triangular lattices.
Because of their ABA relative stacking order, the top
view of this trilayer forms a honeycomb lattice with S
and Mo atoms at A and B sites, respectively. Near the
Brillouin zone inequivalent corners K and K’, the con-
duction and valence band states are approximately from
|φc〉 = |dz2〉 and |φτzv 〉 = (|dx2−y2〉 + iτz|dxy〉)/

√
2 or-

bitals, respectively. This effective two-band model has
been suggested by DFT calculations [20] and supported
by optical experiments [21–24]. To linear order in p, the
effective k ·p Hamiltonian in the above basis reads

H = v(pxτzσx + pyσy) + ∆σz − λτzszσz + λτzsz , (1)

where the Pauli matrices σ operate on the space of the
dz2 and dx2−y2 + idxy orbitals, τz = ±1 labels the K and
K’ valleys, and sz = ±1 denotes the electron spin ↑ and ↓.
The Fermi velocity v is at/h̄ ∼ 0.53× 106 m/s, where t is
the effective hopping between the two Mo d-orbitals me-
diated by the S p-orbitals. As anticipated, the inversion
asymmetry [25] between dz2 and dx2−y2 + idxy orbitals
gives rise to the ∆σz mass term which pins the ground
state to a quantum valley Hall (QVH) insulator [26, 27].
Mo atoms provide strong intrinsic SOC ∼ τzszσz [9, 27]
that adjusts the energy gaps to 2(∆ − λ) for τzsz = 1
bands and to 2(∆ + λ) for τzsz = −1 bands. Note that
this SOC perturbation preserves inversion (P = τxσx)
[25] and time reversal (T = iτxsyK) symmetries. As a
combined effect of broken inversion symmetry and strong
SOC, the term λτzsz breaks the particle-hole symme-
try by oppositely shifting the τzsz = ±1 bands. Using
∆ = 830 meV and λ = 37.5 meV extracted from DFT cal-
culations [20], Fig. 1 plots the band structure of a MoS2

trilayer which exhibits two features that substantially dif-
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FIG. 1. (a) and (b) Electronic band structure near valley
K and K’. (c) LL’s with n = 0, 10, ..., 80 orbitals. (d)-(f)
Enlarged view of the LL’s in Group I, II, and III in (c). The
n 6= 0 LL’s are broken into τzsz = 1 doublets and τzsz =
−1 doublets, due to the SOC and inversion asymmetry. LL
crossing occurs between group II and III. The nI = 0 LL is
spin degenerate and only appears at valley K. The nII , nIII = 0
LL’s are spin-filtered and appear only at valley K’.

fer from graphene, i.e., (i) a large QVH band gap and (ii)
a lifted degeneracy between τzsz = ±1 bands. While the
conduction band bottoms are lined up for all flavors, the
valence band tops have a significant shift in energy be-
tween τzsz = ±1 bands. These symmetry breaking and
spin-valley coupling can be further verified by the flavor-
dependent energy dispersions

E± = λτzsz ±
√
v2p2 + (∆− λτzsz)2

, (2)

where ± stands for the conduction and valence bands.
Broken symmetry LL’s and LL crossing effects.— In

the presence of a uniform perpendicular magnetic field,
the 2D kinetic momentum p in Eq. (1) is replaced by
π = p+eA/c. In the Landau gauge A = (0, Bx), the op-
erators π = πx+iπy coincide with the lowering operators,
satisfying πφn = −i(h̄/`B)

√
2nφn−1 and πφ0 = 0. Here

`B =
√
h̄/(eB) = 25.6/

√
B[T ] nm is the magnetic length

and φn is the nth LL eigenstate of an ordinary 2DEG.
This model is approximately valid when h̄v/`B is smaller
than the band width ∼ 300 meV. To focus on the influ-
ences from SOC and inversion asymmetry on the LL’s,
the relatively smaller effects including Zeeman couplings,
disorders and Coulomb interactions are neglected [28].
We obtain the flavor-dependent LL spectrum

En,± = λτzsz ±
√
nh̄2ω2

c + (∆− λτzsz)2
, (3)

where ωc =
√

2v/`B is the cyclotron frequency. The cor-
responding eigenstates with n > 0 can be formally writ-
ten as (φn, a

±
n,szφn−1)T for valley K and (b±n,szφn−1, φn)T

for K’. For n = 0 LL’s, the eigenstates are (φ0, 0)T with
energy ∆ and (0, φ0)T with energy −∆ − 2λsz. This
shows that the SU(4) invariant four anomalous n = 0
LL’s are broken into a two-fold spin-degenerate conduc-
tion band n

I
= 0 LL at valley K and two spin-split va-

lence band nII , nIII = 0 LL’s at K’, as shown in Fig. 1(c),
leading to quantum Hall effects at ν = 0 and ν = −1 but
not ν = 1. This is reminiscent of the anomalous n = 0
LL’s in few-layer graphene systems [29]. In graphene the
SU(4) symmetry of n = 0 LL’s are completely lifted by
electron-electron interactions [30–32] while the particle-
hole symmetry remains, whereas in the MoS2 trilayer
both the SU(4) and particle-hole symmetries are broken
by the intrinsic SOC and the inversion asymmetry.

Other unconventional LL features can be visualized in
Fig. 1(c) and further understood by expanding Eq. (3) at

nB < 50 T: En,α = (2λτzszδα,−+α∆)+ eh̄v2

∆−λτzsz nB with
α = ±. (i) Because of the heavily massive Dirac Fermion
character, LL energies grow linearly with B, rather than
with

√
B. (ii) SOC break the LL’s into two groups with

τzsz = ±1. However, each n 6= 0 LL is still doubly
degenerate in each group, consisting of one spin ↑ state
from one valley and one spin ↓ state from the other valley.
(iii) The energies of two group LL’s in the valence band
not only have different slopes in B but also shift rigidly
at B = 0, leading to LL crossing effects at

Bc =
4λ(λ+ ∆)

eh̄v2(n
II
− n

III
)

+
8λ2nIII

eh̄v2(n
II
− n

III
)2
, (4)

where nII and nIII are the LL orbitals for Group II (τzsz =
1) and Group III (τzsz = −1) shown in Fig. 1(c).

As an example, in Fig. 2 we consider the crossings
between LL’s with nII = 38, 39, 40, 41 and LL’s with
nIII = 0, 1, 2. The nIII = 0 LL is non-degenerate while
other LL’s are all doubly degenerate. As a consequence,
each region bounded by three LL’s above the n

III
= 0

LL has an odd filling factor ν = −2(n
II

+ n
III

)− 1 while
bounded by four LL’s below has an even filling factor
ν = −2(nII + nIII), where nII and nIII are the orbital in-
dices of the right and the lower LL’s. In addition, the
crossing points at the n

III
= 0 LL have degeneracy g = 3,

while others all have g = 4. The crossing of two LL’s
results in increased degeneracies and lead to pronounced
peaks in the measurement of longitudinal magnetoresis-
tance. Unlike in other 2D materials, the LL crossing only
occurs in the valence band of MoS2 trilayer, reflecting the
broken particle-hole symmetry by intrinsic SOC. This
mechanism is distinct from the spin splitting in semi-
conductor quantum wells and the next-nearest interlayer
hopping in ABA-stacked trilayer graphene [33].

Even in the absence of interactions, the Hall plateaus
follow an unconventional sequence ν = · · · , −2M − 6,
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FIG. 2. The example of valence band LL crossing effect de-
scribed in the text. All LL’s are doubly degenerate except
that the nIII = 0 LL is non-degenerate. The negative number
denotes the filling factor of the region bounded by the sur-
rounding LL’s. The crossing points have degeneracy g = 3 at
nIII = 0 and g = 4 otherwise.

−2M − 4, −2M − 2, −2M − 1, · · · , −5, −3, −1, 0, 2,
4, · · · , where M =

[
4λ(∆ + λ)/(eBh̄v2)

]
[33] reflects the

fact that the n
III

= 0 LL lies between the LL’s with
n

II
= M and n

II
= M + 1. The step of two in the

sequence is a consequence of the τzsz = ±1 classification,
a hallmark of SOC. A step-one jump reflects the filling
of a spin-filtered n = 0 LL. The presence of ν = 0 and
−1 arises from inversion asymmetry that makes Dirac
fermions massive and from SOC that rigidly shifts the
two groups of valence bands. The switching between even
and odd filling factors is a direct result of broken SU(4)
symmetry among the anomalous n = 0 LL’s.

Spin-resolved p-n junctions.— A MoS2 p-n junction
can be realized by using electrostatic gating to locally
control the carrier type and density in two adjacent re-
gions. In such a device, transport measurements in the
quantum Hall regime reveal new plateaus with integer
and fractional filling factors of two-terminal conductance
across the junction. This effect arises from the redis-
tribution of quantum Hall current among spin-resolved
edge channels propagating along and across the junction.
When sz is a good quantum number, because the edge
channels of n

II
, n

III
= 0 LL’s are spin-filtered, the full

equilibrium must be achieved within each spin species
separately. Consequently, the net conductance (in units
of e2/h) across the junction is quantized as follows

Gpp,nn = min{|ν1↑|, |ν2↑|}+ min{|ν1↓|, |ν2↓|} ,

Gpn =
|ν1↑||ν2↑|
|ν1↑|+ |ν2↑|

+
|ν1↓||ν2↓|
|ν1↓|+ |ν2↓|

, (5)

where ν1↑ + ν1↓ = ν1 and ν2↑ + ν2↓ = ν2. In this
limit, for a junction with ν1 = 2n and ν2 = −1, in
the p-doped region the only available LL n

II
= 0 is

spin-filtered. Therefore, the net conductance is given by
Gpn = n/(n + 1). This spin-resolved fractional quanti-
zation Eq.(5) has never been studied before. The con-
ductance across the junction becomes spin-independent
when sz is not conserved, e.g., due to magnetic disor-
ders. This limit is similar to the case of graphene [34–36]
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FIG. 3. Left panel: The solid (dashed) curves represent spin
↑ (↓) bands and the parallel lines denote their LL’s. Regions
A-D are energy windows separated by the three lifted energies
of the four n = 0 LL’s that are depicted by red lines. Right
panel: a schematic p-n junction with two different filling fac-
tors ν1 and ν2 at two regions.

where all possible filling factors are even numbers because
of the spin degeneracy. Therefore, the net conductance
reads Gpn = |ν1||ν2|/(|ν1| + |ν2|) in the bipolar regime
or Gpp,nn = min{|ν1|, |ν2|} in the unipolar regime. Take
the same example with ν1 = 2n and ν2 = −1, Gpn in this
spinless limit becomes 2n/(2n+ 1) instead.

In addition to the unconventional transport proper-
ties, STM probes at the interface can also detect a spe-
cial fingerprint of the spin-filtered n

II
= 0 LL. As shown

in Fig. 3, when the Fermi energy of one region is fixed
between the two valence band n = 0 LL’s (region C),
namely, between 2λ−∆ and−2λ−∆ indicated by Eq. (3),
while the Fermi energy of the other is outside this energy
window, there will be one spin-filtered chiral edge state,
among all the |ν1−ν2| channels, propagating along the in-
terface. The chiral current will be controllable in the fol-
lowing senses. (i) Switching the magnetic field direction
flips the spin-polarization of the current. (ii) Interchang-
ing ν1 and ν2 switches the current direction while tuning
ν1 and ν2 adjusts the current amplitude. (iii) Switching
one of the Fermi level between A/B and D regions while
fixing the other at C region changes the carrier type and
flips the spin-polarization.

Spin Hall conductivity.— Clearly shown in Fig.3, the
spin Hall conductivity is quantized to σSH = e2/h when
the Fermi energy lies in the energy window C, due to
the filling of spin-filtered nIII = 0 LL. We address that
σSH does not vanish even in the absence of fields [37–40],
which is another consequence of the nontrivial valence
band structure of MoS2 trilayers. In a massive Dirac
fermion model, the Berry curvature [27, 41] in the valence
band is nontrivial and reads

Ωẑ(k, τz, sz) =
τzv

2m

2[v2k2 +m2]3/2
, (6)

where m = ∆ − λτzsz is the flavor-dependent mass. At
zero temperature, we obtain the valence band spin Hall
conductivity by integrating szΩẑ(k, τz, sz) over the occu-
pied states and summing over the spin-valley flavors. As
it happens in MoS2 trilayers, the inversion asymmetry
dominates the SOC (∆ > λ) and the system is pinned

FIG. 2. The example of valence band LL crossing effect de-
scribed in the text. All LL’s are doubly degenerate except
that the nIII = 0 LL is non-degenerate. The negative number
denotes the filling factor of the region bounded by the sur-
rounding LL’s. The crossing points have degeneracy g = 3 at
nIII = 0 and g = 4 otherwise.

−2M − 4, −2M − 2, −2M − 1, · · · , −5, −3, −1, 0, 2,
4, · · · , where M =

[
4λ(∆ + λ)/(eBh̄v2)

]
[34] reflects the

fact that the nIII = 0 LL lies between the LL’s with
n

II
= M and n

II
= M + 1. The step of two in the

sequence is a consequence of the τzsz = ±1 classification,
a hallmark of SOC. A step-one jump reflects the filling
of a spin-filtered n = 0 LL. The presence of ν = 0 and
−1 arises from inversion asymmetry that makes Dirac
fermions massive and from SOC that rigidly shifts the
two groups of valence bands. The switching between even
and odd filling factors is a direct result of broken SU(4)
symmetry among the anomalous n = 0 LL’s.

Spin-resolved p-n junctions.— A MoS2 p-n junction
can be realized by using electrostatic gating to locally
control the carrier type and density in two adjacent re-
gions. In such a device, transport measurements in the
quantum Hall regime reveal new plateaus with integer
and fractional filling factors of two-terminal conductance
across the junction. This effect will arise from the redis-
tribution of quantum Hall current among spin-resolved
edge channels propagating along and across the junc-
tion, due to the presence of residue nonmagnetic disor-
der [35, 36]. When sz is a good quantum number, because
the edge channels of n

II
, n

III
= 0 LL’s are spin-filtered,

the full equilibrium must be achieved within each spin
species separately. Consequently, the net conductance
(in units of e2/h) across the junction is quantized as

Gpp,nn = min{|ν1↑|, |ν2↑|}+ min{|ν1↓|, |ν2↓|} ,

Gpn =
|ν1↑||ν2↑|
|ν1↑|+ |ν2↑|

+
|ν1↓||ν2↓|
|ν1↓|+ |ν2↓|

, (5)

where ν1↑ + ν1↓ = ν1 and ν2↑ + ν2↓ = ν2. In this
limit, for a junction with ν1 = 2n and ν2 = −1, in
the p-doped region the only available LL n

II
= 0 is

spin-filtered. Therefore, the net conductance is given by
Gpn = n/(n + 1). This spin-resolved fractional quanti-
zation Eq.(5) has never been studied before. The con-
ductance across the junction becomes spin-independent
when sz is not conserved, e.g., due to magnetic disor-
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FIG. 3. Left panel: The solid (dashed) curves represent spin
↑ (↓) bands and the parallel lines denote their LL’s. Regions
A-D are energy windows separated by the three lifted energies
of the four n = 0 LL’s that are depicted by red lines. Right
panel: a schematic p-n junction with two different filling fac-
tors ν1 and ν2 at two regions.

ders. This limit is similar to the case of graphene [37–39]
where all possible filling factors are even numbers because
of the spin degeneracy. Therefore, the net conductance
reads Gpn = |ν1||ν2|/(|ν1| + |ν2|) in the bipolar regime
or Gpp,nn = min{|ν1|, |ν2|} in the unipolar regime. Take
the same example with ν1 = 2n and ν2 = −1, Gpn in this
spinless limit becomes 2n/(2n+ 1) instead.

In addition to the unconventional transport proper-
ties, STM probes at the interface can also detect a spe-
cial fingerprint of the spin-filtered nII = 0 LL. As shown
in Fig. 3, when the Fermi energy of one region is fixed
between the two valence band n = 0 LL’s (region C),
namely, between 2λ−∆ and−2λ−∆ indicated by Eq. (3),
while the Fermi energy of the other is outside this energy
window, there will be one spin-filtered chiral edge state,
among all the |ν1−ν2| channels, propagating along the in-
terface. The chiral current will be controllable in the fol-
lowing senses. (i) Switching the magnetic field direction
flips the spin-polarization of the current. (ii) Interchang-
ing ν1 and ν2 switches the current direction while tuning
ν1 and ν2 adjusts the current amplitude. (iii) Switching
one of the Fermi level between A/B and D regions while
fixing the other at C region changes the carrier type and
flips the spin-polarization.

Spin Hall conductivity.— Clearly shown in Fig.3, the
spin Hall conductivity is quantized to σSH = e2/h when
the Fermi energy lies in the energy window C, due to
the filling of spin-filtered nIII = 0 LL. We address that
σSH does not vanish even in the absence of fields [40–43],
which is another consequence of the nontrivial valence
band structure of MoS2 trilayers. In a massive Dirac
fermion model, the Berry curvature [27, 44] in the valence
band is nontrivial and reads

Ωẑ(k, τz, sz) =
τzv

2m

2[v2k2 +m2]3/2
, (6)

where m = ∆ − λτzsz is the flavor-dependent mass. At
zero temperature, we obtain the valence band spin Hall
conductivity by integrating szΩẑ(k, τz, sz) over the occu-
pied states and summing over the spin-valley flavors. As
it happens in MoS2 trilayers, the inversion asymmetry
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FIG. 4. (a) Valence band spin Hall conductivity σSH(e2/h)
as a function of εf and u that reduces inversion asymme-
try. The yellow (orange) line denotes the top of the τzsz =
+1 (−1) valence band. (b) Quantum phase transitions be-
tween QVH and QSH states at u = ∆± λ.

dominates the SOC (∆ > λ) and the system is pinned
to a QVH insulator in which σSH = 0 when the Fermi
energy εf lies in the gap, implied by the τz dependence
of Ωẑ. Due to the mass difference between τzsz = 1
and τzsz = −1 groups, however, σSH contributions from
the two groups are not completely canceled out when
εf crosses valence bands. These features can be seen
in the u = 0 line trace in Fig. 4(a). If in the opposite
limit, assuming ∆ = 0, the system becomes a quantized
spin Hall (QSH) insulator with σSH = 2 as shown by
the middle zone in Fig. 4(b). Therefore, if the inversion
asymmetry could be compensated externally, σSH will
be enhanced as long as εf crosses the valence band, even
though the system remains a QVH insulator. The inver-
sion asymmetry arises from the difference between dz2
and dx2−y2 + idxy orbitals, which can be possibly mod-
ulated by chemical doping, straining or electric gating
the two S layers. To investigate the tunability of σSH
by varying εf and by reducing inversion asymmetry, we
propose a linearized phenomenological theory, i.e., the
p-independent terms in Eq. (1) are replaced by

V(τz, sz) = λ(1− u

∆
)τzsz + (∆− u)σz − λτzszσz , (7)

where u is the modeled potential that reduces the inver-
sion asymmetry. In the limit of u = 0 this model recovers
Eq. (1). In the special case of u = ∆, inversion symmetry
is restored and both σz and τzsz terms vanish.

Fig. 4 plots σSH as a function of εf and u. The yellow
(orange) line maps out where εf touches the top of the
valence band with τzsz = +1 (τzsz = −1). In region
C where εf is inside the bulk gap, σSH is identically 0.
When εf lies between the two valence band tops (region
B), σSH increases with decreasing εf . After εf drops far
below the lower valence band top (region A), σSH starts
to decrease slowly. Overall, σSH is maximized when εf is
near the lower valence band top and grows substantially
as u increases. When u is further increased, continuous
quantum phase transitions (QVH-QSH-QVH) occur at
u = ∆∓λ, as shown in Fig. 4(b). Near the first (second)
critical point, the mass of the Dirac fermions with τzsz =

1 (τzsz = −1) changes sign and σSH jumps from 0 to 2
(2 to 0) when εf is inside the gap.

Discussions.— The Hall plateau in graphene follows
the sequence ν = 4(n + 1/2), with SU(4) symmetry
breaking only in the case of high fields, weak disorders,
and strong interactions [30–32]. In sharp contrast, the
quantum Hall ferromagnetism in a MoS2 trilayer arises
naturally with no need for interactions. SOC and inver-
sion asymmetry also imprint a single-particle signature
on the LL spectrum: the broken symmetry of the n = 0
LL’s with energies independent of the field strength.
The unconventional Hall plateau sequence becomes even
richer in a p-n junction with the appearance of spin-
resolved fractionally quantized conductance. A control-
lable spin-polarized current materializes within this ge-
ometry and can be probed by STM at the interface. Un-
like in other 2D materials [33], the LL crossing effects
only occur in the valence bands of MoS2 trilayer. These
two valence bands, split by SOC, are also imbalanced in
their contributions to σSH at zero field with hope for in-
creasing σSH by reducing the gap. The coexistence of
these remarkable band-structure effects makes the MoS2

trilayer a charming material even in the absence of inter-
actions. With improvements on its mobility, the MoS2

trilayer system may realize as an alternative to graphene
in fulfilling the desire for a gaped Dirac system with
strong SOC, and we also anticipate observations of its
unique Hall phenomena discovered in this Letter.
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