
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Doped Mott Insulators in (111) Bilayers of Perovskite
Transition-Metal Oxides with a Strong Spin-Orbit Coupling

Satoshi Okamoto
Phys. Rev. Lett. 110, 066403 — Published  6 February 2013

DOI: 10.1103/PhysRevLett.110.066403

http://dx.doi.org/10.1103/PhysRevLett.110.066403


Doped Mott insulators in (111) bilayers of perovskite transition-metal oxides with the
strong spin-orbit coupling

Satoshi Okamoto1, ∗
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The electronic properties of Mott insulators realized in (111) bilayers of perovskite transition-metal
oxides are studied. The low-energy effective Hamiltonians for such Mott insulators are derived in the
presence of the strong spin-orbit coupling. These models are characterized by the antiferromagnetic
Heisenberg interaction and the anisotropic interaction whose form depends on the d orbital occu-
pancy. From exact diagonalization analyses on finite clusters, the ground state phase diagrams are
derived, including a Kitaev spin liquid phase in a narrow parameter regime for t2g systems. Slave-
boson mean-field analyses indicate the possibility of novel superconducting states induced by carrier
doping into the Mott-insulating parent systems, suggesting the present model systems as unique
play grounds for studying correlation-induced novel phenomena. Possible experimental realizations
are also discussed.

PACS numbers: 71.27.+a, 74.20.-z

Competition and cooperation between Mott physics
and the relativistic spin-orbit coupling (SOC) have
become a central issue in condensed matter physics.
As these two effects become comparable, 4d and 5d
transition-metal oxides (TMOs) could be ideal platforms
to explore novel phenomena originating from such in-
teractions. This brought considerable attention to irid-
ium oxides.1–3 Of particular interest is A2IrO3 (A=Li or
Na) where Ir ions form the honeycomb lattice. Density-
functional-theory calculations for Na2IrO3 predicted the
quantum spin Hall effect.4 Alternatively, with strong
correlation effects, the low-energy properties of A2IrO3

could be described by a combination of pseudodipolar
interaction and Heisenberg interaction,5 called Kitaev-
Heisenberg (KH) model,6 which is a candidate for realiz-
ing Z2 quantum spin liquid (SL) states. However, later
experimental measurements confirmed a magnetic long-
range order7,8 in Na2IrO3 possibly because of longer-
range magnetic couplings.9,10 The effect of carrier doping
into the Kitaev-Heisenberg model was also studied.11,12

Interacting electron models on a honeycomb lattice
have long been theoretical targets for realizing novel phe-
nomena such as the quantum Hall effect without Landau
levels13 and the spin Hall effect with the SOC.14 The spin
Hall effect could also be generated by correlations with-
out the SOC.15 Yet, experimental demonstrations for
such correlation-induced phenomena remain to be done.
Recently, artificial bilayers of perovskite TMOs grown
along the [111] crystallographic axis, where transition-
metal ions form the buckled honeycomb lattice (Fig. 1),
were proposed as new platforms to explore a variety of
quantum Hall effects.16–18 This proposal was motivated
by the recent development in synthesizing artificial het-
erostructures of TMOs.19 TMO heterostructures have
great tunability over fundamental physical parameters,
including the local Coulomb repulsion, SOC, and carrier
concentration. However, the effect of correlations to pos-
sible novel phenomena near Mott insulating states with
the strong SOC remains to be explored.
Here, we address the correlation effects in TMO (111)
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FIG. 1: (Color online) Buckled honeycomb lattice realized in
a (111) bilayer of the cubic lattice. x, y and z in (a) show the
cubic axes and the spin components in the Kitaev interaction.

bilayers with the strong SOC. Specifically, we consider t52g
systems and e1,3g systems for which the low-energy elec-
tronic properties could be described in terms of S = 1/2
isospins.20 We derive the effective Hamiltonians for such
Mott insulators and analyze them numerically and ana-
lytically. The effective Hamiltonian for t52g has the form

of the KH model,5 but the SL was found to exist only in a
small parameter regime. On the other hand, the effective
Hamiltonian for e1,3g has the Ising-type anisotropy, thus
the SL is absent. The effect of carrier doping is analyzed
using slave-boson mean-field methods including ansätze
which reduce to exact solutions at limiting cases of zero
doping. It is shown that carrier doping makes the physics
of our model systems more interesting by inducing un-
conventional superconducting states, most-likely d + id
paring which breaks time-reversal symmetry.

Effective models: We start from a multiband Hubbard
model with t2g orbitals or eg orbitals. In both cases,
only the nearest-neighbor (NN) hoppings are considered,
and the hopping amplitude is derived from the Slater-
Koster formula21 with oxygen p orbitals located between
the neighboring two d orbitals. The explicit forms of the
multiband Hubbard models are given in Ref. 22

The low-energy effective Hamiltonian for t52g systems
is derived from the second-order perturbation processes
with respect to the transfer terms and by projecting the
superexchange-type interactions onto the isospin states
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for Jz
eff = ±1/2:22

|Jz
eff = σ〉 = 1√

3
{i|a,−σ〉 − σ|b,−σ〉+ iσ|c, σ〉}. (1)

Here, a, b and c are the t2g multiplet given by |a〉 = |yz〉,
|b〉 = |xz〉 and |c〉 = |xy〉, respectively. The effective
interaction between sites ~r and ~r′ along the γ bond (see
Fig. 1) reads

Hγ
~r~r′ = −J0 + JH ~S~r · ~S~r′ + JKSγ

~r S
γ
~r′ . (2)

J0 = 1
27
(15r1 + 5r2 + 4r3), JH = 8

27
(3r1 + r2 + 2r3),

JK = 4
9
(r1−r2), where r1 = t2π/(U−3I), r2 = t2π/(U−I),

r3 = t2π/(U + 2I). Here, both Heisenberg and Kitaev
terms have positive sign, i.e., antiferromagnetic (AF).23

For eg systems in the (111) bilayers, the SOC is ac-
tivated through the virtual electron excitations to the
t2g multiplet under the trigonal C3v crystalline field.16,22

Using the basis |α〉 = |3z2 − r2〉 and |β〉 = |x2 − y2〉, a
low-energy Kramers doublet for e1g is given by

|σ〉 = 1√
2
{|α, σ〉+ iσ|β, σ〉}, (3)

where the spin quantization axis is taken along the [111]
crystallographic axis. For e3g, the + sign in Eq. (3) is
replaced by the − sign. This doublet can be gauge
transformed to 1√

2
{|3x2 − r2, σ〉 + iσ|y2 − z2, σ〉} and

1√
2
{|3y2 − r2, σ〉+ iσ|z2 − x2, σ〉} with trivial phase fac-

tors. Thus, the effective interaction is expected to be
symmetric with respect to the bond direction. Follow-
ing the same procedure for the t52g systems, the effective
interaction between sites ~r and ~r′ is derived as

H~r~r′ = −J0 + JH ~S~r · ~S~r′ − JIS
z
~rS

z
~r′ . (4)

Here, J0 = 1
8
(3r1 + 2r2 + r3), JH = 1

2
(r1 + r3), JI =

1
2
(2r1−r2−r3), where r1 = t2σ/(U−3I), r2 = t2σ/(U−I),

r3 = t2σ/(U + I). Now the anisotropic term is described
as a ferromagnetic (FM) Ising interaction. This comes
from the fact that the total Sz is conserved in the model
[see Eq. (3) and Ref. 22].
The effect of the direct dd transfers, termed tδ after

(ddδ) bonding, for both the models is discussed in Ref. 22.
Undoped cases: Here we discuss the AF Kitaev-AF

Heisenberg (AKAH) model for the t52g system and the FM

Ising-AF Heisenberg (FIAH) model for the e1,3g system
using the parameterization JH,I = 1 − α and JK = 2α.
As JH and JK have the same sign, the direct transition is
expected between the Néel AF at small α and the Kitaev
SL at large α for the AKAH model. For the FIAH model,
the planar Néel AF is expected at small α and the FM
with the spin moment in the [111] direction at large α.
We now employ the Lanczos exact diagonalization

for the model Hamiltonians [Eqs. (2) and (4)] defined
on a 24-site cluster with the periodic boundary condi-
tion. This cluster is compatible with the four-sublattice
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FIG. 2: (Color online) Lanczos exact diagonalization results,
squared total spins (normalized to its value in the fully polar-
ized FM state) and the NN spin correlations, for t52g model (a)
and e1,3g model (b) obtained on 24-site clusters as a function of
α. Solid (dashed) lines correspond to original (rotated) spin
basis. Vertical dash-dot lines are first-order phase boundaries.
Shaded areas are the parameter ranges for 0 < 3I < U with
tδ = 0. Inset: Controlling parameter α for both t52g and e1,3g

models as a function of 3I/U . Dashed lines include tδ = 0.1tπ
or tδ = 0.1tσ .

transformation5 which changes the original spin S to S̃.
Numerical results shown in Fig. 2 (a,b) confirm the above
considerations. Yet, the SL regime is found to be rather
narrow for the AKAH model with the critical αc ∼ 0.96
separating it from a magnetically ordered phase. For
the FIAH model, the phase transition takes place at
α = 0.5 separating the (111) FM phase and the planar
Néel AF phase. In Refs. 25,26, the hypothetical Kitaev-
Heisenberg models with different signs of interactions are
studied.
Natural questions arise where is the “physical” param-

eter range, i.e., U > 3I, and can t2g systems realize
the Kitaev SL phase? Now, rewriting JK,I and JH as
JK,I = 2Jα and JH = J(1− α), respectively, with J the
normalization, one obtains α = JK,I/(2JH + JK,I). In
the inset of Fig. 2, we plot α for both the t52g and the e1,3g

models as a function of I/U . It is shown that α does not
exceed 1/5 for the AKAH model and 1/2 for the FIAH
model; thus both cases fall into the Néel ordered regime.
The effect of the direct dd transfers is found to merely
suppress the anisotropic interactions as seen as dashed
lines. Thus, additional interactions, such as magnetic
frustrations, are necessary to realize the Kitaev SL phase
in t2g systems to suppress JH .
Slave-boson mean-field theory: Although the Kitaev SL

phase is outside the “physical regime” for Mott insulating
systems, there could emerge novel electronic states by
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carrier doping.11,12 As the two models are reduced to the
tJ model on the honeycomb lattice at α → 0, one possible
candidate is the singlet superconductivity (SC) with the
broken time-reversal (TR) symmetry, so-called d + id.27

In the opposite limit of the AKAH model, novel SC states
could be stabilized in connection to the Z2 SL. For the
FIAH model, on the other hand, the triplet (p) SC states
may emerge. Here, we examine these possibilities using
a slave-boson mean-field (SBMF) theory.
First, we introduce a SBMF method that can be ap-

plied for Ising-like anisotropic interactions. An S = 1/2
spin operator for a Kramers doublet is described by

fermionic spinons fσ as Sγ
~r = 1

2
f †
~rστ

γ
σσ′f~rσ′ with the local

constraint
∑

σ f
†
~rσf~rσ = 1 and τ̂γ being a Pauli matrix.

Now, a spin quadratic term can be decoupled into several
different channels as

Sγ
~r S

γ
~r′ =−1

8
(∆∗

~r~r′∆~r~r′ + χ∗
~r~r′χ~r~r′ + tγ∗~r~r′t

γ
~r~r′ + eγ∗~r~r′e

γ
~r~r′)

+
1

8

∑

γ′ 6=γ

(tγ
′∗

~r~r′ t
γ′

~r~r′ + eγ
′∗

~r~r′ e
γ′

~r~r′), (5)

where ∆~r~r′ = f~rσiτ
y
σσ′f~r′σ′ (singlet pairing), tγ~r~r′ =

f~rσ[iτ̂
γ τ̂y ]σσ′f~r′σ′ (triplet pairing), χ~r~r′ = f †

~rσf~r′σ′ (spin-

conserving exchange term), eγ~r~r′ = f †
~rστ

γ
σσ′f~r′σ′ (spin-

non-conserving exchange term). Summation over γ in
Eq. (5) gives a Heisenberg term. Then, the mean
field decoupling is introduced to terms having the neg-
ative coefficient. This recovers the previous mean-field
schemes.28–30 Different decoupling schemes are also used
in literatures.11,12,31 The full expression of the mean-field
Hamiltonian is given in Ref. 22.
We remark on the AF Kitaev limit of the undoped

t52g model. For this limit, we looked for self-consistent
mean field solutions which respect the underlying lat-
tice symmetry. Such a solution was found to be given
by −〈χx,y,z〉 = −〈ezz〉 = 〈txx〉 = i〈tyy〉 = 0.3812i and
−〈ezx〉 = −〈ezy〉 = 〈txy〉 = 〈txz 〉 = i〈tyx〉 = i〈tyz〉 = −0.1188i
with the other order parameters and the chemical poten-
tial being zero. Here, the notation is simplified by re-
placing the subscript ~r~r′ with the bond index ρ = x, y, z
connecting the sites ~r ∈ A and ~r′ ∈ B; ~rρ = ~r′ − ~r.
It is remarkable that this mean-field solution gives the
spinon dispersion relation identical to that reported for
the FM Kitaev model,22,30 i.e., the ground state of the
Kitaev model does not depend on the signs of exchange
constants.6 The current ansatz corresponds to the gauge
used in Refs. 11 and 30, and correctly describes a Z2 SL.
Doping effects: We consider hopping matrices pro-

jected into neighboring Kramers doublets. In this rep-
resentation, the hopping matrices are diagonal in the

isospin index σ: Ht = −t̃
∑

〈~r~r′〉σ(c
†
~rσc~r′σ + h.c.). The

hopping amplitude is renormalized according to the rel-
ative weight of the wave functions as t̃ = 2

3
(tπ + 1

2
tδ)

[ 1
2
(tσ + tδ)] for the t52g [e1,3g ] systems. The double occu-

pation is prohibited due to the strong repulsive interac-
tions for c operators. This effect at finite doping can be
treated by introducing two bosonic auxiliary particles b1,2

as c~rσ ⇒ 1√
2
(b†~r1f~rσ + σb†~r2f

†
~rσ̄) (Ref. 28) with the SU(2)

singlet conditionKγ
~r = 1

4
TrF~r τ̂

γF †
~r − 1

4
Tr τ̂zB†

~r τ̂
γB~r = 0.

Here, F~r =
(

f~r↑
f~r↓

−f
†

~r↓

f
†

~r↑

)
and B~r =

(
b
†

~r1

b
†

~r2

−b~r2
b~r1

)
(Ref. 11),

and the global constraints 〈Kγ〉 = 0 are imposed by
SU(2) gauge potentials aγ . Doped carriers can be ei-
ther holes or electrons, and the effect is symmetric for
our model. We focus on the low-doping regime at zero
temperature and assume that all bosons are condensed,

i.e., δ =
∑

ν〈b
†
ν~rbν~r〉 ≈ ∑

ν |〈bν~r〉|2 and 〈bν~r∈A〉 =
(±i)〈bν~r′∈B〉, arriving at the mean-field hopping term:

HMF
t = − δ

2
t̃
∑

〈~r~r′〉σ{(∓i)f †
~rσf~r′σ + h.c.}. Imaginary

number i arises when the bose condensation inquires the
sublattice-dependent phase.11

Many mean-field parameters have to be solved self con-
sistently. In order to make the problem tractable, we
focus on the following five ansätze which respect the six-
fold rotational symmetry of the underlying lattice. First
ansatz, termed p SC1, is adiabatically connected to the
mean-field solution in the Kitaev limit given above. Here,
the relative phase ±i is required between the bose con-
densation at sublattices A and B with the SU(2) gauge
potentials ax = ay = az .11,22 The second ansatz is a p
SC, termed p SC2, the third one is a singlet SC with the
s wave paring, and the fourth one is a singlet SC with the
d + id pairing. For the latter three ansätze, we further
assume that 1. order parameters 〈eγρ〉 are zero because
these indeed become zero at large dopings, 2. the bose
condensation does not introduce a phase factor, and 3.
the exchange term is symmetric 〈χρ〉 = 〈χ〉 and real.
Thus, these ansätze are regarded as BCS type weak cou-
pling SCs. For the FM Ising case, magnetically ordered
states with finite 〈ezρ〉 = 〈ez〉 are considered as the fifth
ansatz.

Because of the constraint ax = ay = az, the spinon

density 〈f †
~rσf~rσ〉 differs from the “real” electron density

〈c†~rσc~rσ〉 in the p SC1 phase and a normal phase (〈tγρ〉 =
〈eγρ〉 = 〈∆ρ〉 = 0) adjacent to it. In many cases, such a
normal phase has slightly lower energy than the other SC
ansätze. We discard such a solution as it is an artifact
by the constraint.

The schematic phase diagrams for the doped AKAH
model (a) and FIAH model (b) are shown in Fig. 3 as a
function of δ and α. Here, to see various phases clearly,
we chose the interaction strength as JK + JH = tπ + 1

2
tδ

and JI + JH = tσ + tδ. For the AKAH model, the p SC1

phase is stabilized at α ∼ 1 and δ ∼ 0. Its area is quite
small as its stability is intimately connected to that of
the Z2 spin liquid. Large area is covered by the singlet
SCs, d + id phases at small δ and s at large δ. This
behavior results from the fact that the AF Heisenberg
term dominates the low energy properties. For the FM
Ising case, the (111) FM phase is stabilized in the large-α
and small-δ regime. The p SC2 phase is also stabilized
from the weak coupling mechanism but is found to exist
only as a metastable phase.

The p SC1 phase is characterized by the dispersive χ0
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FIG. 3: Schematic phase diagrams for the doped AKAH
model (a) and FIAH model (b) as a function of δ and α. Pa-
rameters are taken as JK+JH = tπ+

1

2
tδ and JI+JH = tσ+tδ.

Phase boundaries at finite δ are the results of the SU(2)
SBMF, while those at δ = 0 are results of the exact di-
agonalization. Shaded areas are the parameter ranges for
0 < 3I < U with tδ = 0. Light lines in (b) are phase bound-
aries when the FM ordering is suppressed.

Majorana mode and the weakly-dispersive χx,y,z modes.
At finite δ, all modes are gapped by the mixing between
different Majorana modes due to the finite gauge poten-
tial ax,y. This results in the finite Chern number +1.
In the (111) FM, spin polarization is 100 % at δ = 0 as

in the exact diagonalization result. This large spin po-
larization persists up to relatively large δ as carriers can
move without disturbing the spin ordering. The (111)
FM area is extended to smaller α at δ 6= 0 because the
mean-field anzatz for the (111) FM is closer to the true
ground state at δ = 0 than that for the d + id. Since
α is reduced by the direct dd transfers, the unconven-
tional d+ id SC is the most probable candidate induced
by carrier doping.
Discussion: We now discuss the possible experimen-

tal realization of our model systems. A (111) bilayer
of SrIrO3 (Ref. 35) would be a good candidate for our
AKAH model for t52g systems. Also, the FIAH model
might be realized in a (111) bilayer of palladium oxide
LaPdO3 (Ref. 34). This 4d7(t62ge

1
g) electron system con-

sists of nearly undistorted PdO6 octahedra and is ex-
pected to have the stronger SOC than 3d counterparts
such as LaNiO3. Carrier doping would be achieved by
partially substituting Ir by Ru or Os (hole doping) or

Sr by La (electron doping) for SrIrO3 and La by Sr (hole
doping) or Pd by Ag or Au (electron doping) for LaPdO3.
It is yet to be clarified whether SrIrO3 and LaPdO3 are in
the strong coupling regime, resulting in Mott insulators,
or in the weak coupling regime, resulting in spin Hall
insulators or topological metals.16 Even if these systems
are in the Mott regime, the Kitaev SL may not be real-
ized. But, carrier doping would induce novel SC phases
with d+ id symmetry.

For deriving effective models, the energy hierarchy is
assumed as U ≫ λ ≫ t. Whether or not such a condi-
tion is realized in real materials remains to be examined.
However, the effective transfer intensity is suppressed by
correlations, and the corresponding hierarchy could be
achieved self-consistently as discussed in Ref. 2. (111)
bilayers of perovskite oxides are plausible as the d bands
are relatively narrow (see for example band structures in
Ref. 16). The form of the NN interaction should not be
altered even if the above hierarchy is broken as long as
the local crystal field is maintained and the interactions
are expressed in terms of S = 1/2 isospins because it
relies on the symmetry and the spin conservation.

Realizing Z2 SL and p SC phases may be preferable
for fault tolerant topological computations. Within the
current models, these phases are hard to achieve. For
this purpose, an alternative route would be looking for
systems with the FM Heisenberg interaction with which
the parameter spaces for the p SC phases in the doped
systems are wider.26

To summarize, we studied the properties of Mott insu-
lators realized in (111) bilayers of TMOs with the strong
SOC. The low-energy effective models for such insulators
consist of the anisotropic interaction and the AF Heisen-
berg interaction. The former is of AF Kitaev-type for
the t52g systems and FM Ising-type for the e1,3g systems.
In both the cases, large parameter spaces are character-
ized by magnetic long range orderings with the narrow
window for the SL regime in the t52g systems. Yet, car-
rier doping was found to make the physics of the current
models more interesting by inducing unconventional SC
phases in both the cases. The most probable candidate
is the singlet SC with the d+ id symmetry. In the light
of the weak SOC limit (Refs. 17,18) and the strong cou-
pling limit (Ref. 36), TMO (111) bilayers would provide
even richer quantum behavior as a function of Coulomb
interactions, the SOC and carrier doping.
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