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We present a large N solution of a microscopic model describing the Mott-Anderson transition
on a finite-coordination Bethe lattice. Our results demonstrate that strong spatial fluctuations, due
to Anderson localization effects, dramatically modify the quantum critical behavior near disordered
Mott transitions. The leading critical behavior of quasiparticle wavefunctions is shown to assume
a universal form in the full range from weak to strong disorder, in contrast to disorder-driven non-
Fermi liquid (“electronic Griffiths phase”) behavior, which is found only in the strongly correlated
regime.
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Both Anderson (disorder-driven) and Mott
(interaction-driven) routes to localization play sig-
nificant roles in materials close to the metal-insulator
transition (MIT) [1], but the full understanding of their
interplay remains elusive. These effects are believed to
be the cause of many puzzling features in systems rang-
ing from doped semiconductors [2] and two-dimensional
electron gases [3], to broad families of complex oxides [4].

Early theories of the MIT [5] focused on the stability
of conventional metals to introducing weak disorder, but
these Fermi-liquid approaches proved unable to describe
strong correlation phenomena which took center stage
in recent years. Indeed, the last two decades have seen
significant advances in our understanding of “Mottness”,
not least because of the development of dynamical mean-
field theory (DMFT) [6], which has been very successful
in quantitatively explaining many aspects of strong cor-
relation.

Because in its simplest form DMFT does not capture
Anderson localization effects, several recent refinements
were introduced, which proved capable of capturing both
the Mott and the Anderson mechanisms. The conceptu-
ally simplest [7] such approach - the typical-medium the-
ory (TMT) - provided the first self-consistent description
of the Mott-Anderson transition, and offered some insight
into its critical regime. For weak to moderate disorder,
this theory found a transition closely resembling the clean
Mott point, while only at stronger disorder Anderson lo-
calization modified the critical behavior. However, close
scrutiny [8] revealed that some of these findings may be
artifacts of the neglect of spatial fluctuations in this for-
mulation.

An alternative but technically more challenging ap-
proach to Anderson-Mott localization was dubbed “Sta-
tistical DMFT” (statDMFT) [9]. Here, only the strong
correlations are treated in a self-consistent DMFT fash-
ion, while disorder fluctuations are treated by a (nu-
merically) exact computational scheme. While certainly
much more reliable than TMT-DMFT, so far this method

was utilized only in a handful of theoretical studies of the
Mott-Anderson transition [10, 11], and the precise form
of quantum criticality has never been explored in detail.

In this letter, we present the first precise and de-
tailed study of the quantum critical behavior of the Mott-
Anderson transition in a Bethe lattice, within the frame-
work of statDMFT. We address the following physical
questions, which we answered in a clear and reliable fash-
ion: (1) Are there two distinct types of quantum critical-
ity in this model, as TMT-DMFT suggested, or do the
fluctuation effects restore universality within the critical
regime? (2) How general is the disorder-driven non-Fermi
liquid behavior (electronic Griffiths phase), and how does
it relate to the relative strength of correlations and disor-
der? These results are obtained for a specific microscopic
model, where our formulation proves exact in an appro-
priately defined large N limit.

Charge transfer model and statDMFT – The charge
transfer (CT) model has been used in the description
of many multi-band systems near the Mott transition,
including various oxides [12], two-dimensional electron
gases near Wigner-Mott crystallization [13], as well as
doped semiconductors [14]. It consists of a two band
model, where one band represents weakly correlated con-
duction electrons and the other one is a narrow, strongly
correlated band containing nearly Mott-localized elec-
trons. In the clean case, the Mott-insulating phase can
be approached at odd integer filling by increasing the
charge-transfer gap, which reduces the hybridization be-
tween the two bands. When the effective (correlation-
renormalized) hybridization vanishes, the system under-
goes a Mott metal-insulator transition.

While many studies of the Mott-Anderson transitions
concentrate on disordered single-band Hubbard models,
we chose to focus on the CT model for two specific rea-
sons. First, most real Mott systems are better described
by the CT model than by the single-band Hubbard
model, because it better incorporates the charge-transfer
nature. Second, the simplest version of the CT model im-
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FIG. 1: (Color online) Phase diagram of the disordered CT
model. Ect = −Ef is the CT energy, which plays the role of
Hubbard’s U . The dashed lines are guides to the eyes.

poses the U = ∞ constraint (no double-occupancy) for
the correlated band, a feature that considerably simpli-
fies some technical aspects of our calculation, allowing a
simple Gutzwiller-type variational solution of the model.
This becomes formally exact in an appropriate large N
limit, which is conveniently formulated within the stan-
dard slave-boson approach [15].

The Hamiltonian of our disordered CT model corre-
sponds to that of the disordered Anderson lattice model,
which is given by

H =
∑
ijσ

[(εi − µ)δij − t] c†iσcjσ + (Ef − µ)
∑
iσ

f†iσfiσ

+ V
∑
iσ

(
c†iσfiσ + f†iσciσ

)
+ U

∑
i

nfi↑nfi↓, (1)

where c†iσ (ciσ) creates (destroys) a conduction electron

with spin σ on site i, f†iσ and fiσ are the correspond-
ing creation and annihilation operators for a localized
f -electron with spin σ on site i, nfiσ = f†iσfiσ is the num-
ber operator for f -electrons, t is the hopping amplitude,
which is non-zero only for nearest neighbors, Ef is the
f -electron energy, U is the on-site repulsion between f -
electrons, V is the hybridization between conduction and
f -electrons, and µ is the chemical potential. Disorder is
introduced through the on-site energies εi for conduction
electrons, which follow a distribution P (ε), assumed to
be Gaussian with zero mean and variance W 2. Through-
out this paper we use the half-bandwidth for conduction
electrons as the unit of energy; the hybridization poten-
tial is chosen to be V = 0.5.

Within the CT model, the average number of electrons
per unit cell is equal to 1, which can be enforced by ad-
justing the chemical potential and is written as

〈nci〉+ 〈nfi〉 = 1, (2)

where nfi = nfi↑ + nfi↓ gives the number of f -electrons
on site i, nci = nci↑ + nci↓ is the corresponding number

operator for conduction electrons, with nciσ = c†iσciσ,
and the averages are taken over the distribution P (ε).

In this work we solve the above Hamiltonian using
statDMFT [9], in which the disordered lattice model is
reduced to a self-consistent solution of an ensemble of
single-impurity models located in the different sites j of
the lattice. The corresponding local effective actions take
the form:

S(i)(j) (3)

=
∑
σ

∫ β

0

dτ

∫ β

0

dτ ′f†jσ(τ) [δ(τ − τ ′) (∂τ + Ef − µ)

+ ∆fj(τ − τ ′)] fjσ(τ ′) + U

∫ β

0

dτnfj↑(τ)nfj↓(τ),

where the superscript (i) indicates that site i has been
removed from the lattice. The bath function, ∆fj(τ−τ ′),
is given by

∆fj(iω) =
V 2

iω + µ− εj −∆cj(iω)
, (4)

where ∆cj(iω) = t2
∑z−1
k=1G

(j)
ck (iω), k 6= i in the summa-

tion, and z is the coordination number (chosen to be 3 in

this work). G
(j)
ck (iω), the Green’s function for conduction

electrons, satisfies

G
(j)
ck (iω) =

1

iω + µ− εk −∆ck(iω)− Φk(iω)
, (5)

where

Φk(iω) =
V 2

iω + µ− Ef − Σfk(iω)
(6)

and Σfk(iω) is the single-impurity self-energy, which is a
solution of an action similar to that given in eq. (3), but
for site k (instead of j).

To solve the single-impurity problems of eq. (3), we use
the slave-boson (SB) technique in the U →∞ limit [15].
In this case, the impurity Green’s function can be written
as

Gfk(iω) =
Zk

iω − εfk − Zk∆fk(iω)
, (7)

where Zk is the local quasi-particle (QP) weight and εfk
is the renormalized f -electron energy. For technical de-
tails on solving the statDMFT equations for a closely
related model see Ref. [16].

Order parameter and phase diagram – To determine
the phase diagram within statDMFT, we examine the
behavior of the typical value of the local density-of-states
(LDOS) for conduction electrons at the Fermi energy
(ω = 0). This order parameter [9] measures the degree
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FIG. 2: (Color online) Typical (open symbols) and inverse
of average (full symbols) values of the LDOS for conduction
electrons close to the Fermi energy. Results are shown as a
function of the disorder strength, W , for different values of
the CT energy, Ect. Note that Ect = 1.8 is larger than the
critical Ect where the transition happens in the clean limit,
which justifies the initial increase observed above for ρtyp.
The inset gives a zoom on the results close to the MIT.

of localization of quasiparticle wavefunctions [7, 8]. It is
given by

ρtyp = exp{〈ln ρi(ω = 0)〉}, (8)

where 〈...〉 denotes the (arithmetic) average over disor-
der and the most probable value is represented by the
geometric average. Its vanishing directly indicates that
wavefunctions are Anderson-localized.

Fig. 1 presents the phase diagram we obtained for the
disordered CT model. Here, we show the phase boundary
between the metallic and the Mott insulating phases, as
well as that between the metal and the Anderson insula-
tor; the region where a metallic Griffiths phase is seen is
also shown, close to the Mott insulator. For our model,
the charge-transfer gap, Ect = −Ef , controls the effec-
tive strength of electron-electron interactions, i.e. plays
the role of the Hubbard U .

In dramatic contrast to TMT-DMFT [8] and also
statDMFT [11] results for disordered Hubbard models,
here (see Fig. 1) we find a surprisingly broad intermediate
metallic regime, spanning the region where correlations
and disorder are comparable. This result may indicate
that strong correlation effects have, for charge-transfer
models, a more pronounced tendency to suppress Ander-
son localization than what was expected from Hubbard
model studies. This finding is significant, because the CT
model should be considered a more accurate representa-
tion of many real materials than the simple single-band
Hubbard model.

Critical behavior near the disorder-driven transition –
To obtain the phase boundary between the metallic and
the Anderson insulating phases of Fig. 1, we examined
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FIG. 3: (Color online) Typical (open symbols) and inverse
of average (full symbols) values of the LDOS for conduction
electrons close to the Fermi energy. Results are shown as
a function of the CT energy, Ect, for different values of the
disorder strength W .

the behavior of ρtyp as a function of W , for different
values of the CT energy; typical results are shown in
Fig. 2. For all values of Ect considered, ρtyp is found
to decrease with disorder, reflecting Anderson localiza-
tion effects. As the interaction parameter Ect increases,
we observe that the MIT shifts to larger values of dis-
order. This behavior, which is caused by the tendency
for disorder screening by correlation effects, is consistent
with previous results obtained for the disordered Hub-
bard model within TMT-DMFT [8]. In addition, we find
that the inverse of ρav = 〈ρi(ω = 0)〉 (see Fig. 2) vanishes
at exactly the same W value for which ρtyp vanishes, sim-
ilarly as in statDMFT studies of disorder-driven MIT in
doped Mott insulators [9].

Critical behavior near the Mott-like transition – The
behavior of ρtyp as a function of Ect near interaction-
driven (Mott-like) transitions is shown in Fig. 3. We
find that, as disorder increases, the transition (given by
ρtyp = 0) shifts to larger Ect, consistent with previous
results for disordered Hubbard models [8, 17], reflecting
the tendency of disorder to broaden the Hubbard bands.

The behavior of our localization order parameter ρtyp
shows very interesting behavior as the transition is ap-
proached. It initially increases with the interaction pa-
rameter Ect, reflecting the correlation-induced screening
of disorder within the metallic phase, an effect already
found in previous studies [8, 17]. Very close to the tran-
sition, however, this tendency is reversed, and our order
parameter ρtyp starts to decrease and eventually van-
ishes, indicating localization of quasiparticle wavefunc-
tions. Most remarkably, the critical behavior of both ρtyp
and the inverse of ρav = 〈ρi(ω = 0)〉 vanish linearly at
criticality - thus displaying precisely the same critical be-
havior as for the disorder-driven transition. This result is
in dramatic contrast to the prediction of simpler DMFT
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or TMT-DMFT treatments [8, 17], where ρtyp displays a
finite jump at the disordered Mott transition.

The electronic Griffiths phase – The second order pa-
rameter identified by statDMFT is the local quasiparticle
(QP) weight Z [6, 9]; its vanishing indicates the destruc-
tion of the Fermi liquid by local moment formation (i.e.
local Mott localization). In presence of disorder, this
quantity displays spatial fluctuations, and must be char-
acterized by an appropriate distribution function, P (Z),
which can assume a power-law form P (Z) ∼ Zα−1 [9, 18].
When the corresponding exponent α becomes smaller
than 1, this indicates [9] disorder-driven non-Fermi liq-
uid behavior [1], dubbed the “electronic Griffiths phase”
(EGP).

We have carefully studied the behavior of P (Z) across
the phase diagram, and we find that EGP behavior is
not found close to disorder-driven transitions, but is re-
stricted to the vicinity of the interaction-driven (Mott-
like) transition (see Fig. 1). Similar behavior has also
been observed for the two-dimensional Hubbard model
within statDMFT [18]. We also found that a finite frac-
tion of sites display Z = 0 within the Mott-like insulator,
confirming the formation of localized magnetic moments
(“Mott droplets”) [18]. In contrast, all Z-s remain finite
within the Anderson-like insulator, indicating the lack of
local moment formation in this phase.

Comparison with DMFT results – For further insight in
the role of Anderson localization in our model, we com-
pare our statDMFT results with those we obtained within
conventional DMFT [17], which can be easily adapted
for our model. Here, the average Green’s function for
conduction electrons satisfies the following self-consistent
equation

Ḡc(iω) =

〈
1

iω + µ− εk − t2Ḡc(iω)− Φk(iω)

〉
. (9)

Since conventional DMFT is unable to capture Ander-
son localization effects but is able to describe Mott lo-
calization, the comparison is only meaningful and inter-
esting close to the interaction-driven transition. Within
DMFT the typical and the average values of LDOS coin-
cide, and in Fig. 4 we compare the DMFT results with the
corresponding quantities obtained from our statDMFT
calculation. Further from the transition, for small Ect,
results obtained from both theories essentially coincide,
displaying correlation-induced screening. Closer to the
transition, ρtyp obtained from statDMFT displays a max-
imum and starts to deviate from the DMFT result, and
eventually vanishes much before DMFT would predict
Mott localization (see Fig. 4). This clearly indicates
that Anderson localization effects “kick in” only suffi-
ciently close to Mott localization, and ultimately deter-
mine the resulting quantum critical behavior. We stress
here that its precise (linear) form, though, is qualitatively
different [9] than in the non-interacting model, where
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FIG. 4: (Color online) StatDMFT typical (ρtyp) and inverse
of average (1/ρav) and DMFT average (ρdmft) values of the
LDOS for conduction electrons close to the Fermi energy.
Results are shown as a function of the CT energy, Ect, for
(a) W = 0.25 and (b) W = 1.0. Note that both averages
predicted by statDMFT start to deviate from DMFT results
only within the narrow critical region close to the Mott-like
transition.

ρtyp vanishes exponentially for the Bethe lattice model
we consider.

We reiterate that these disorder-induced localization
effects arise only within a narrow critical region close to
the disordered Mott insulator. Its size can be estimated
by examining how the location of ρtyp maximum evolves
with disorder W . Remarkably, we find that the bound-
ary of this critical region closely tracks the boundary of
the EGP. This result makes perfect sense, as both An-
derson localization effects and the EGP behavior reflect
profound and dramatic spatial fluctuations of the rele-
vant physical quantities.

Conclusions – In summary, we carried out a detailed
statDMFT study of the T = 0 critical behavior at
the Mott-Anderson transition for a disordered charge-
transfer model. Remarkably, identical critical behavior
of the localization order parameter ρtyp is found in the
close vicinity of both interaction-driven (Mott-like) and
disorder driven (Anderson-like) transitions. This result
demonstrates that (spatial) fluctuation effects captured
by our statDMFT, but not by simpler treatments, re-
store a degree of universality at this quantum critical
point. In contrast, the thermodynamic behavior charac-
terized by non-Fermi liquid features (electronic Griffiths
phase) is found only near the Mott-like transition. Re-
sults obtained by experimental probes, such as Scanning
Tunneling Microscope (STM), can be directly compared
with our predictions for the behavior of the local DOS,
and this is a fascinating direction for future experimental
work. Theoretically, finite temperature properties as well
as the role of inter-site correlations remain to be exam-
ined in more detail, but these interesting questions are a
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challenge for future work.
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