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A boundary integral method is developed to investigate the effects of inner droplets and asymmetry 

of internal structures on rheology of 2-dimensional (2-D) multiple emulsion particles with arbitrary 
numbers of layers and droplets within each layer. Under a modest extensional flow, the number 
increment of layers and inner droplets, and the collision among inner droplets subject the particle to 
stronger shears. Besides, coalescence or release of inner droplets changes the internal structure of the 
multiple emulsion particles. Since the rheology of such particles is sensitive to internal structures and 
their change, modelling them as the core-shell particles to obtain the viscosity equation of a single 
particle should be modified by introducing the time-dependable volume fraction Φ(t) of the core 
instead of the fixed Φ. An asymmetric internal structure induces an oriented contact and merging of 
the outer and inner interface. The start time of the interface merging is controlled by adjusting the 
viscosity ratio and enhancing the asymmetry, which is promising in the controlled release of inner 
droplets through hydrodynamics for targeted drug delivery. 
PACS numbers：83.50.Jf, 83.80.Iz, 47.11.Hj 

 
Multiple emulsions, which have highly ordered 

internal structures containing multiple layers and 
probably containing one or multiple smaller engulfed 
droplets in each layer (figure 1), have drawn much 
attention recently due to their great potentials in the 
fabrication of microcapsules applied for drug delivery 
systems [1]. (The particle itself is the 1st layer; its 
direct daughter-droplets belong to the 2nd layer; the 
droplets of the i-th layer have direct mother droplets 
belonging to the (i-1)-th layer.) The preparation of 
such fantastic particles is hard and highly skilful owing 
to their structural complexity. During the past decade, 
microfluidics develops rapidly and provides a great 
platform to generate multiple emulsions with complex 
but skilfully-designed internal structures [1-3]. 
Recently, Wang et. al. [2c] fabricated multiple 
emulsions containing distinct components through a 
hierarchical microfluidic device. The number, ratio 
and size of the smaller droplets in these complex 
particles can be precisely controlled. Droplets 
encapsulated in the particles can be employed as 
separate compartments to deliver incompatible 
chemicals, or as microreactors for chemical reactions. 
Generally, these complex particles are delivered 
through the flows in micro-vessels and might release 
their inclusions through the shell breakup under the 
shears. Up to now, only a few experiments have been 
done to investigate the rheology of double emulsions 
[3]. Lately, the controlled breakup of double 
emulsions as they flow through an orifice of a tapered 
nozzle was reported, and a flow regime where the 
inner core can be released was identified [3b, 3c]. 
Under the flow shears and the geometry constraint of 
channels, the deformed double emulsions were further 
converted into non-spherical microcapsules after 
polymerization [4a]. Chen et. al. [4b] developed a 

microfluidic method to carry out reactions in double 
emulsions by flow-controlled coalescence of 
encapsulated droplets, which has potentials for the 
fabrication of high viscosity particles and for cell 
assays and screening. 

 

 
FIG. 1 Illustration of multiple emulsions particles. (a) 
Double emulsions containing inner droplets of various 
numbers. (Reproduced with permission from [2a]. 
Copyright 2007 Wiley-VCH Verlag GmbH & Co. 
KGaA) (b) Concentric multiple emulsions. 
(Reproduced with permission from [2b]. Copyright 
2011 Wiley-VCH Verlag GmbH & Co. KGaA)  (c) 
Multiple emulsions with complex internal structures. 
(Reproduced with permission from [2a], Copyright 
2007 Wiley-VCH Verlag GmbH & Co. KGaA)    
 

Currently, the numerical investigation of the 
rheology of multiple emulsions has been carried out 
by many groups through various methods such as 
level set, diffuse interface and boundary integral 
method et. al. [5, 6]. However, all their works are 



 
limited to the core-shell double emulsions. Thus, 
effects of complex internal structures on 
multiple-emulsion rheology have never been explored. 
In this letter, in order to investigate the effects of 
complex internal structures, we develop a boundary 
integral equation which is suitable to study multiple 
emulsions with orderly internal structures of arbitrary 
numbers of layers and droplets within each layer in 
microchannels with various geometries.  

Figure 2 is an illustration of the deformation of a 
multiple-emulsion droplet under an extensional flow 
in a symmetric cross-slot. r0 is the half width of the 
four identical arms. S0 is the boundary including the 
wall, inlet and outlet of the cross-slot with normal 
vectors pointing inside. A two-dimensional (2D) 
complex particle is trapped at the stagnant point of the 
cross-slot and deforms under the shears of the 
continuous phase (CP) with viscosity μ and density ρ. 
The governing equations of the external fluid are the 
Stokes equations and the continuity equation  

2 0μ∇ ⋅ = − + ∇ =uσ ∇P ,                   (1) 
 0u∇ ⋅ = ,                           (2) 
where σ is the stress tensor, P is the dynamic pressure 
combining the pressure and gravitational terms, and u 
is the velocity of CP.  

 
FIG. 2 Illustration of the deformation of the multiple 
emulsion droplet with four layers (n=4, m1=1, m2=1, 
m3=1, m4=2) in a cross-slot. 
 

These equations can also be applied for all droplets 
of the multiple emulsions. Nonetheless, physical 
parameters in these equations must be replaced by the 
corresponding parameters of those droplets, such as 
the viscosity λijμ. λij is the viscosity ratio of the ij-th 
droplet dij to CP. The subscripts i and j indicate the 
j-th droplet of the i-th layer. The interface of the 
droplet with unit normal vectors n pointing outward is 
indicated by Sij, and its interface tension is γij. Fluid 
density of the ij-th droplet is κijρ, and κij is the density 
ratio of the ij-th droplet to CP. Boundary conditions 
(BCs) of the velocity u and surface stress f=σ•n on Sij 
are 
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where g is the gravity acceleration, and the superscript 
“ijmom” indicates the mother droplet of the ij-th 
droplet (when i=1, “ijmom” indicates CP). At walls (S0) 
of the cross-slot, the non-slip BC gives  

0 0=u  .                                     (5) 
At the inlets and outlets (S0) of the cross-slot, the 
undisturbed flows are specified as the parabolic 
pressure-driven flows. The velocity profile is 
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where G is the shear rate at the wall of inlets or outlets; 
positive sign is for inlets and negative sign is for 
outlets. The velocity at a point x0 on the droplet surface 
Sij and outer boundaries S0 can be described by the 
boundary integral equation (BIE) 
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where n, m1 and mi can be any integer. S is the 
fundamental solution of 2D Stokes equations and T is 
the associated stress kernel, which are well defined in 
the reference [7a]. The numerical solution of the set of 
boundary integral equation and boundary conditions is 
achieved through the 2D spectral boundary element 
method [7a] to get the velocity u of each point on 
interfaces. Then, based on known interface velocities 
u and stresses f, the velocity of any interior point in a 
flow region with boundaries B composed of Sij and/or 
S0 is calculated through the well-known BIE [7b],  

04 ( ) [ ]
B

dBπμ μ= − ⋅ − ⋅ ⋅∫u x S f T u n .              (9) 

In order to determine the evolution of the droplet 
shape, an explicit time-integration algorithm is 
employed to solve the kinematic condition dx/dt = u at 
the interface. The fourth-order Runge-Kutta method 
are employed to lower the numerical error associated 
with the time integration. This numerical method has 
been validated by comparing our results (for 
concentric double emulsions) to those of Stone and 
Leal [6a]. 

Deformation parameter D=(L-S)/(L+S) is employed 
to describe the droplet deformation, where L and S are 
the lengths of the major and the minor axes of the 
droplets, respectively. U=r0G/3 is the average velocity 
of CP at inlets, which is equivalent to capillary number 



 
Ca=μU/γ when the viscosity μ of CP and the surface 
tension γ of the outmost interface of particles are 
fixed. When only one particle is considered, the radius 
ratio kij is defined as kij=rij/r11, where r11 is the radius 
of the particle. The half width r0 of the cross-slot which 
equals to 2r11 is the length scale. When the volume flow 
rate Q=2r0

2/3, the shear rate is unit, which is selected as 
the scale G0; thus, the time is scaled with the flow time 
scale G0

-1; the scale of the flow rate is r0G0. 
Eqs.3-8 can treat from simple emulsions, double 

emulsions to multiple emulsions of any internal 
structures. Since the physical parameters λij, γij and κij 
are all disrelated for different droplets, each droplet 
can contain distinct components and have its own 
properties. However, for the common situation, i.e., 
only water and one oil involved, although the internal 
structure can still be of any pattern, the parameters are 
simplified to only one λ, one γ and one κ. When 
effects of gravities and buoyancies are neglected, 
density differences vanish. In the following 
calculations, these simplifications are applied, and we 
have U=0.333, λ=0.5, and γ=5 for the fixed external 
flow and the fixed physical parameters. 

 

 
FIG. 3 Deformation of concentric multiple emulsions 
with layers from n=1 to n=4 in a cross-slot (k11: k21: 
k31: k41=1:0.5:0.25:0.15). Deformation of a double 
emulsion (a) and a multiple emulsion with 4 layers (b) 
and their internal velocity fields; (c) Deformation 
parameter D versus time for the outmost interfaces of 
multiple emulsions with layers up to 4.  
 

The deformation of concentric multiple emulsions 
with layers from n=1 to n=4 under a modest 
extensional flow is investigated as shown in figure 3. 
Horizontal�for S11 and S31�and vertical�for S21 and 
S41�elongation occur in turn for the interfaces of 
various layers in the multiple emulsions. This alternate 
pattern of deformation is caused by the alternate flow 
fields in each layer. At the equilibrium, the deformation 
D of the outmost interface (S11) is apparently increased 
by the presence of internal layers (figure 3c), which 
means that the inner layers subject the particle to 
stronger shears.  

The deformation of double emulsions containing 
seven inner droplets under the modest extensional flow 
is shown in figure 4a and 4b. “Distance” in the figure is 
the distance between the centre of one inner droplet and 
the origin, which indicates the movement of the inner 
droplets. When three inner droplets locate initially on 
the horizontal axis (figure 4a), D has a slight rise after it 
reaches an equilibrium, which is caused by the 
collision of the three droplets. When three inner 
droplets locate initially on the vertical axis (figure 4b), 
D has a slight decline after it reaches an equilibrium, 
which is caused by the approach and contact of droplet 
#2 and #5 to the outer interface of the particle. As 
studied by Leal [8a], due to the film drainage in the 
head-on collision, the pressure between two 
approaching drops is quite high. For two inner droplets 
moving to each other and colliding, the resistance 
caused by the film drainage will request more driving 
forces, which enhances the outer shears to which the 
particle is subjected. For inner droplets moving toward 
to the outer interface of the mother particle, the 
approaching will elevate the pressure of the film 
between the outer and the inner interface, which will 
sustain the top-middle and bottom-middle of the outer 
interface, hamper the compression of the particle, and 
eventually cause the decline of D. Nevertheless, the 
coalescence caused by the collision of inner droplets, 
and the release of inner droplets caused by the merging 
of inner and outer interfaces will result in the severe 
change of internal structures.  

 
FIG. 4 Deformation of double emulsions containing 
seven inner droplets (n=2, m1=1, m2=7; k11: k2j =1: 
0.15, j=1-7) and the effect of inner-droplet numbers on 



 
the deformation D. (a) Three inner droplets (#1, 4 and 
7) locate on the horizontal axis. (b) Three inner 
droplets (#2, 5 and 7) locate on the vertical axis. (c) The 
effect of the number of inner droplets (m2=4, 5, 6 and 
7) on the deformation D of the double emulsions.  
 

Pal [5c] modelled double emulsions with multiple 
inner droplets as the core-shell particles with a fixed 
volume fraction Φ of the core to derive the formula 
(Eq. 10) to calculate the viscosity ηPE of the single 
particle in a dilute double emulsion, 

PE
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λμ μη λμ Φ
λ
+= +

+
.                  (10) 

When μ and λ are fixed, ηPE only depends on Φ and 
will be constant for fixed Φ. However, ηPE might shift 
under the outer flows due to the possible change of 
internal structures of double emulsions, which might 
be answered by introducing time-dependable volume 
fraction Φ(t) instead of the fixed Φ.  

When the number of inner droplets increases, the 
complication of internal structures will make the 
particle subject to stronger shears, as shown in figure 
4c. Generally, odd number of inner droplets might 
cause more complexity than even number since it is 
easier to introduce asymmetry into the system. 
However, this is not always true since inner droplets of 
odd number might initially distribute in a symmetric 
pattern such as the double emulsion in figure 4. 

Deformation of multiple emulsions with an internal 
structure of reduced symmetry has been investigated as 
shown in figure 5. Although the multiple emulsion is 
totally symmetric about the origin (figure 5a, time=0), 
the three droplets d3j (j=1-3) cause the asymmetry of 
the particle about the horizontal axis. S11 and S21 reach 
common equilibrium shapes soon after the particle 
subjects to a modest extensional flow (figure 5a, 
time=2.0). However, the slow movement of the three 
small droplets leads to the asymmetry of the flow 
between S21 and S3j (j=1-3), and makes d21 move 
upward (figure 5a, time=11.6). Finally, S21 and S11 
contact at the central top, which could cause the 
asymmetric breakup of the particle. Thus, when the 
triangle of d3j (j=1-3) points up, the particle would 
break up at the central top and release the ingredient in 
d21 to the up-half flow field. The start time of release 
can be controlled by adjusting the viscosity ratio and 
the size of d3j (j=1-3), which is shown in figure 5d. dgap 
is the distance between the central top of S11 and that of 
S21. The time when dgap reaches 0.01 (1% of the particle 
diameter, a distance within which the merging assumes 
to happen [8b]) is supposed when the release starts. 
Higher asymmetry (Large radius of d3j enhances the 
asymmetry.) and lower viscosity ratios will generate 
the earlier release time tr which can be calculated by 
the fitted formula 

r ( 28.80 18.18) ( 5.80 2.90)t k k λ= − + + − +3j 3j .   (11) 
Due to the extreme diversity of the internal 

structures, there are too many multiple emulsions to be 
investigated. Nevertheless, based on our current 
analysis, the number increment of inner layers and 

droplets, and the collision among inner droplets will 
enhance the shears subjected by the particle, which 
might elevate the particle viscosity. However, the 
destabilization such as the release of inner droplets will 
ease the added tension of the particle, which will 
reduce the viscosity. Since the rheology of multiple 
emulsions is sensitive to the change of internal 
structures, the derived single-particle viscosity 
equation by simply modelling double emulsions 
containing multiple inner droplets as the core-shell 
particles [5c] should be modified by introducing the 
time-dependable volume fraction Φ(t). These results 
are also useful to the rheology response of cells with 
complex internal structures. Besides, complex internal 
structures present the possibility to design multiple 
emulsions for some special object. For instance, the 
designed asymmetric internal structures in figure 5 
induce the oriented and time-controllable breakup of 
the particles, which provide a possibility to execute the 
control release of inclusions in multiple emulsions 
through hydrodynamics. 

 
FIG. 5 Deformation of a multiple emulsion with a 

complex internal structures in a cross-slot (n=3, m1=1, 
m2=1, m3=3; k11: k21: k3j = 1:0.6:0.15, j=1-3). (a) 
Snapshots of the deformation. (b) Deformation of the 
interfaces of the multiple emulsions. (c) Distance of 
the mass centres of fluid bodies with an interface Sij to 



 
the origin. (d) Effects of the viscosity ratio and the 
size of d3j (j=1-3) on the start time of release. 
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