
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Class of Generalized Kapchinskij-Vladimirskij Solutions and
Associated Envelope Equations for High-Intensity Charged-

Particle Beams
Hong Qin and Ronald C. Davidson

Phys. Rev. Lett. 110, 064803 — Published  5 February 2013
DOI: 10.1103/PhysRevLett.110.064803

http://dx.doi.org/10.1103/PhysRevLett.110.064803


A class of generalized Kapchinskij-Vladimirskij solutions and

associated envelope equations for high-intensity charged particle

beams

Hong Qin1, 2 and Ronald C. Davidson1

1Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

2Department of Modern Physics, University of Science

and Technology of China, Hefei, Anhui 230026, China

Abstract

A class of generalized Kapchinskij-Vladimirskij solutions of the Vlasov-Maxwell equations and

the associated envelope equations for high-intensity beams in an uncoupled lattice is derived. It

includes the classical Kapchinskij-Vladimirskij solution as a special case. For a given lattice,

the distribution functions and the envelope equations are specified by ten free parameters.

The class of solutions derived captures a wider range of dynamical envelope behavior for

high-intensity beams, and thus provides a new theoretical tool to investigate the dynamics of

high-intensity beams.
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For high-intensity charged particle beams in an uncoupled periodic transverse focusing

lattice, the beam envelope dynamics described by the envelope equations is an important

research topic for optimizing beam quality and controlling beam instability. The most

comprehensive self-consistent description of high-intensity beam dynamics, including both

collective transverse dynamics [1–3] and longitudinal dynamics[4], is a kinetic description

using the Vlasov-Maxwell (VM) equations [5]. In 1959, Kapchinskij and Vladimirskij [5, 6]

derived the envelope equations as a rigorous solution of the VM equations for a special distri-

bution function, which is now called the Kapchinskij-Vladimirskij (KV) distribution. Since

then, the envelope equations have become a very important theoretical tool for investigating

the transverse dynamics of high-intensity beams in uncoupled focusing lattices [1–3, 7–15].

In this Letter, we derive a class of generalized Kapchinskij-Vladimirskij solutions of the

VM equations and the associated nonlinear envelope equations for high-intensity beams in

an uncoupled transverse focusing lattice. The new class of distribution functions and the

associated envelope equations include the classical KV distribution function and the asso-

ciated envelope equations as a special case. In the classical KV solution, for a prescribed

focusing lattice and line density of the beam, the distribution function and associated enve-

lope equations are specified by two free parameters (excluding the initial conditions), i.e.,

the transverse emittances εx and εy. The (x, y)-projection of the KV distribution is a up-

right ellipse with constant density inside. The dimensions of the ellipse a(s) and b(s) are

time dependent and determined by the envelope equations (8). In the generalized solutions

described in this Letter, for a given uncoupled focusing lattice and line density, the dis-

tribution functions and associated envelope equations are specified by ten free parameters,

defined by a constant 4 × 4 symmetric and positive definite matrices ξ, called emittance

matrix in this Letter. The (x, y)-projection of the distribution is an ellipse with constant

density inside as in the classical KV solution. However, the beam ellipse is allowed to ro-

tating around the beam centroid in addition to the pulsating dynamics of the transverse

dimensions. This extra degree of freedom is specified by the time-dependent tilt angle θ(s)

of the ellipse. The generalized distribution function and the associated envelope equations

are given by Eqs. (17) and (16). The classical KV solution is a special case of the generalized

solutions presented here when the emittance matrix is chosen to be ξ =







ξ1 0

0 ξ1





, where
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ξ1 =







1/εx 0

0 1/εy





is a 2 × 2 matrix corresponding to the emittance εx and εy in the two

transverse directions for the classical KV solution.

When the beam ellipse is tilted, the space-charge force couples the x−dynamics and

y−dynamics of a single particle. Therefore, to construct the generalized KV solution for

high-intensity beams in an uncoupled lattice, we will first generalize the classical KV solu-

tion to an arbitrary coupled lattice, where the coupled dynamics can be induced by both

the external focusing lattice and the self-potential. This most generalized solution is then

restricted to the case of uncoupled external focusing lattice, allowing coupled focusing force

to be induced only by the self-force. In this most generalized solution, the ten free param-

eters are specified by the emittance matrix ξ, which is a large-scale generalization of the

previous self-consistent solution of high-intensity beams in a coupled focusing lattice with

only one free parameter, i.e., one scalar emittance [16]. The case of one scalar emittance

corresponds to a beam with the same normalized emittance in the two transverse directions,

which obviously does not include many beam configurations for practical applications. How-

ever, generalized solutions with a general emittance maxtrix ξ are technically more difficult

to treat. Specifically, the difficulty is associated with the calculation of the velocity inte-

gral [see Eq. (20)] for the general case. It turns out that this difficulty can be overcome

by the technique of Cholesky decomposition for a symmetric, positive definite matrix [see

Eq. (19)]. Using this technique, we are able to obtain an envelope equation for the most

general case. We note that Barnard and Losic [12] developed a set of moment equations

from the Vlasov-Maxwell equations to described beam dynamics with angular momentum

in a coupled focusing lattice. The moment formulation and the envelope formulation given

in this letter are equivalent to each other. In Ref. [12], a uniform density beam was assumed,

without showing an underlying self-consistent distribution function explicitly, appealing to

the general work of Sacherer [1] to justify the assumption. An explicit derivation of the

underlying distribution function is given in this letter.

Our starting point is the Vlasov-Maxwell equations that govern the nonlinear evolution

of the distribution function f and the normalized self-field potential ψ,

∂f

∂s
+ v · ∂f

∂x
− (∇ψ + κqxxex + κqxyey) · ∂f

∂v
= 0 , (1)

∇2ψ =
−2πKb

Nb

ˆ

fdvxdvy . (2)
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Here, the normalized self-field potential is defined by ψ = qbφ/γ
3
bmβ

2
b c

2, where φ is the

space-charge potential, βbc is the directed beam velocity in the longitudinal direction, γb =

(1 − β2
b )

−1/2
is the relativistic mass factor, s = βbct is an effective time variable normalized by

1/βbc, Kb = 2Nbq
2
b/γ

3
bmβ

2
b c

2 is the beam self-field perveance, and Nb =
´

fdxdydvxdvy is the

line density. Particle motion in the beam frame is assumed to be non-relativistic, and (x, y)

is the transverse displacement of a beam particle, v = dx/ds = (vx, vy) is the normalized

transverse velocity in the beam frame, and κqx and κqy are the focusing coefficients for the

uncoupled quadrupole lattice. The −∇ψ term in Eq. (1) describes the self-field force due

to the self-electric and self-magnetic fields of the beam, and it is nonlinearly coupled to the

distribution function f through Eq. (2). Equations (1) and (2) form a integro-differential

equation system, and it is in general difficult to find analytical solutions.

Kapchinskij and Vladimirskij [5, 6] discovered a remarkable solution of the VM equations

(1) and (2), which is now called the KV distribution. The solution is constructed from the

well-known Courant-Snyder (CS) invariants [17] for a linear focusing lattice

Ix =
x2

w2
x

+ (wxẋ− xẇx)2 , Iy =
y2

w2
y

+ (wyẏ − yẇy)2 . (3)

Here, εx and εy are the constant transverse emittances, and wx and wy are the envelope

functions satisfying the envelope equations,

ẅx + (κqx + κsx)wx = w−3
x , ẅy + (κqy + κsy)wy = w−3

y . (4)

In Eq. (4), the self-field force are assumed a prior to be uncoupled and proportional to the

displacement with the defocusing coefficient κsx and κsy, i.e., −∇ψ = −κsxxex−κsyyey. The

coefficients κsx and κsy will be determined self-consistently from the distribution function,

which is required to satisfy the Vlasov equation (1) and simultaneously generate a linear

self-field force in order for the CS invariants to be valid. A distribution function that satisfies

both conditions is the KV distribution given by

fKV =
Nb

πεxεy
δ

(

Ix

εx
+
Iy

εy
− 1

)

, (5)

which obviously satisfies the Vlasov equation (1) because it is a function of the invariants

of the particle dynamics. Here, the constants εx and εy are the transverse emittances. The

density profile projected by the distribution function fKV in the transverse configuration
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space is

n (x, y, s) =

ˆ

dvxdyyfKV =











Nb/πab, 0 ≤ x2/a2 + y2/b2 < 1 ,

0, 1 < x2/a2 + y2/b2 .
(6)

where a ≡ √
εxwx , b ≡ √

εywy . This density profile in the (x, y)-plane corresponds to a

constant-density beam with elliptical cross-section and pulsating transverse dimensions a

and b. The associated normalized self-field inside the beam, determined from Eq. (2), is

given by

ψ =
−Kb

a + b

(

x2

a
+
y2

b

)

, 0 ≤ x2/a2 + y2/b2 < 1, (7)

which indeed generates a linear defocusing force with coefficients κsx = −2Kb/a(a+ b), and

κsy = −2Kb/b(a+ b). The KV solution reduces the VM equations to the envelope equations

given by Eq. (4) in terms of wx and wy, or equivalently, in terms of a and b as

ä + κqxa− 2Kb

(a + b)
=
ε2

x

a3
, b̈+ κqyb− 2Kb

(a+ b)
=
ε2

y

b3
. (8)

The envelope equations have become an indispensable tool for our understanding of the

dynamical behavior of high-intensity beams.

We now show how to construct a class of more general solutions of the VM equations and

the associated envelope equations, which include the classical KV solution as a special case.

It turns out that the class of distribution functions that generate a linear space-charged

force and satisfy the Vlasov equation is much wider than the classical KV distribution given

by Eq. (5). As mentioned earlier, the generalized solution projects to a rotating, pulsating

elliptical beam which induces coupled dynamics in the transverse direction. Our strategy is

to allow the external focusing lattice to be coupled as well. In this case, the Vlasov equation

can be written as

∂f

∂s
+ v · ∂f

∂x
− (∇ψ + κqx) · ∂f

∂v
= 0 , (9)

where

κq =







κqx κqxy

κqyx κqy





 (10)

is the matrix of coupling coefficients, κqx and κqy are the focusing coefficients for the lattice,

and κqxy = κqyx are the the coupling coefficients, which can be produced, for example, by

a skew-quadrupole component of the lattice. Every component of κq is a function of s.

The generalized KV distribution that solves the Vlasov-Maxwell system (9) and (2) projects
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to a rotating, pulsating beam with elliptical cross-section in transverse configuration space

with constant density inside the beam. Both the transverse dimensions a and b, and the

tilt angle θ are functions of s = βbct, in contrast with the pulsating upright elliptical beam

cross-section for the classical KV solution.

The rotating, pulsating beam with elliptical cross-section in transverse configuration

space, and constant density inside the beam, generates a coupled linear space-charge force

of the form

−∇ψ = −κsx , κs =







κsx κsxy

κsyx κsy





 , (11)

where κsxy = κsyx, which allows us to apply the generalized Courant-Snyder (CS) the-

ory [18–20] for the coupled transverse dynamics. The exact form of κs will be determined

self-consistently [see Eq. (21)]. We now use the generalized CS invariant to construct a gen-

eralized KV solution of the Vlasov equation (9), which also projects to a rotating, pulsating

elliptical beam with constant density inside the beam. In this manner, a self-consistent

solution of the Vlasov-Maxwell equations (9) and (2) is found for high-intensity beams in

a coupled transverse focusing lattice. For a charged particle subject to the coupled linear

focusing force and the coupled linear space-charge force

−∇ψ − κqx= −κx , κ = κq + κs , (12)

the generalized CS invariant is given by [18–20]

Iξ = zTQTP T ξPQz, (13)

where z ≡ (x, y, vx, vy)T , ξ is the constant 4 × 4 emittance matrix, which is symmetric and

positive definite, and superscript “T ” denotes transpose. Here, P and Q are 4 × 4 matrices

determined by a 2 × 2 envelope matrix w =







w1 w2

w3 w4





 as follows

Q =







(w−1)
T

0

−ẇ w





 (14)

Ṗ = P φ̇ , φ̇ ≡







0 − (w−1)
T
w−1

(w−1)
T
w−1 0





 . (15)

The 2 × 2 envelope matrix w is determined from the matrix envelope equation

ẅ + wκ =
(

w−1
)T
w−1

(

w−1
)T

. (16)
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The P matrix defined by w is a rotation in the 4D phase space, i.e., P ∈ SO(4), which

is a generalization of the phase advance to higher dimension, and φ̇ is the corresponding

generating angular momentum, i.e., φ̇ ∈ so(4). The matrix product QTP T ξPQ can be

viewed as the beam matrix. It is symmetric and positive definite because ξ is symmetric

and positive definite. Its determinate is constant, i.e., |QTP T ξPQ| = |ξ|, due to the fact

that P and Q are symplectic. This fact has also been verified numerically in the numerical

example given near the end of this letter.

Since Iξ is an invariant of the particle dynamics, any function of Iξ is a solution of the

Vlasov equation (9). However, in order to solve for the Vlasov-Maxwell equations (9) and

(2), the distribution function must generate the coupled linear space-charge force of the

form in Eq. (11). For this purpose, we select the distribution function to be the following

generalized distribution

f =
Nb

√

|ξ|
π

δ (Iξ − 1) . (17)

Here, Nb is the line-density which is a constant. To be consistent with the assumption

that the space-charge force is linear, it is necessary to verify that this distribution function

indeed generates a linear space-charge force. The number density in configuration space is

n (x, y, s) =
´

dvxdvyf . The velocity integral here is much more difficult to calculate than

in the classical KV case, because Iξ depends on the phase advance matrix P . The special

technique required here is the Cholesky decomposition. For a symmetric, positive definite

matrix M, it is always possible to uniquely decompose it into the form

M = LTL ,

where L is a lower triangular matrix. This is the Cholesky decomposition. In the present

case, the matrix product QTP T ξPQ is symmetric and positive definite and its Cholesky

decomposition is

QTP T ξPQ = LTL , (18)

L =







RT/2w−T 0

D−1/2CwT −DT/2w DT/2w





 (19)

where superscript “1/2” denotes the square-root operation of a matrix. For a symmetric and

positive definite matrix M , its square-root is defined by M1/2MT/2 = M. The matrices D,
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C, and R in Eq. (19) are related to the phase advance matrix P and the emittance matrix

ξ as follows,







A B

C D





 ≡ P T ξP ,

R ≡ A −BD−1C .

The R matrix is known as the Schur complement of D.

With the help of the Cholesky decomposition, we can introduce a coordinate transforma-

tion in the velocity space

V
T = (Vx, Vy) = (D−1/2CwT −DT/2)x +DT/2wv,

where x ≡ (x, y)T and v ≡ (vx, vy)T . The Jacobian of the coordinate transformation is

dvxdvy =
1

|DT/2w|dVxdVy .

The velocity integral in Eq. (2) can then be carried out in closed form as

n (x, y, s) =

ˆ

dvxdvyf =

ˆ

dVxdVy

Nb

√

|ξ|
π|DT/2w|δ

(

x
Tw−1Rw−T

x + V 2
x + V 2

y − 1
)

=











Nb|RT/2w−T |, 0 ≤ x
Tw−1Rw−T

x < 1 ,

0, 1 < x
Tw−1Rw−T

x .
(20)

As expected, the beam density profile in the (x, y)-plane is indeed a tilted ellipse with

constant density inside. The beam ellipse is given by x
Tw−1Rw−T

x < 1, whose area is

|w−1Rw−T |−1/2 = |RT/2w−T |−1. The transverse dimensions a(s) and b(s) and the tilt angle

θ(s) of the ellipse are determined by the eigenvalues (λ1, λ2) and eigenvectors (v1,v2) of the

matrix w−1Rw−T as

a ≡
√

1/λ1 , b ≡
√

1/λ2 , E =







cos θ sin θ

− sin θ cos θ





 ≡ (v1,v2) .

Here, E is the matrix defining the rotation of the ellipse relative to the upright position.

Then, the self-force can be expressed as

−







∂ψ/∂x

∂ψ/∂y





 = −κs







x

y





 , κs =
−2Kb

a+ b
E







1/a 0

0 1/b





E−1 . (21)
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The coupled linear space-charge coefficient κs is thus a function of the envelope matrix w

and the constant emittance matrix ξ.

When Eq. (21) is substituted back into Eq. (12), the envelope equation (16) becomes a

closed nonlinear matrix equation for the envelope matrix w. Therefore, we have succeeded in

finding a class of self-consistent solutions of the Vlasov-Maxwell equations for high-intensity

beams in a coupled transverse focusing lattice. The solution reduces to a nonlinear matrix

ordinary differential equation for the envelope matrix w, which determines the geometry

of the pulsating and rotating beam ellipse. Compared with the classical KV solution in a

uncoupled lattice, the unique feature of the generalized solution is that the beam ellipse is

rotating with time. This feature persists even when the external focusing lattice is the stan-

dard uncoupled lattice. In this case, the generalized solution represents a class of solutions

larger than the classical KV solution. Even though the focusing lattice is uncoupled, the

space-charge force can still couple the two degrees of freedom in the transverse direction.

It is a pleasant surprise that an uncoupled focusing lattice can actually confine and focus a

rotating and pulsating high-intensity beam in a self-consistent manner. This new family of

solutions can be used as an effective beam smoothing technique for accelerator applications

where smooth illumination is required, such as in the case of heavy ion fusion and medical

accelerators.

Because the beam is rotating in the transverse plane, the conventional emittance ǫx and

ǫy are no longer constants but periodic functions of s that take on their minima when the

beam ellipse is “upright”, i.e., in normal form in the transverse plane. The dynamics of

ǫx and ǫy can be obtained through the following equations once the envelope matrix w is

solved,

ǫx =
〈

x2
〉 〈

v2
x

〉

− 〈xvx〉2 , ǫy =
〈

y2
〉 〈

v2
y

〉

− 〈yvy〉2 , (22)

where 〈χ〉 ≡
´

χf dxdydvxdvy/Nb is the phase space average of a function χ.

We now give a numerical example of the new class of solutions in an uncoupled focusing

lattice. We consider the case of a high-intensity beam with normalized self-field perveance

is Kb/ε = 0.1 in a FODO (acronym for focusing-off-defocusing-off) focusing lattice with

normalized quadrupole focusing field amplitude κ̂qS ≡ qbB
′

q/γbmβbc
2 = 15 and filling factor

η = 0.30, where S is the lattice period. The emittance is chosen to be ξ =







I ξ2

ξ2 I





 and
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Figure 1: Beam cross section defined by 0 ≤ x
T w−1Rw−T

x < 1 for 0 ≤ s/S ≤ 2.

ξ2 =







0 0.5

0 0





 . Plotted in Fig. 1 is the beam cross section as a function of time for two

lattice periods. It is clear that as the beam radii pulsate with time, the beam also rotates in

the transverse plane. The dynamics of beam radii and tilt angle are also plotted in Fig. 2,

which indicates that the dynamics of pulsation and rotation has a period of 3S.

In conclusion, we have derived a class of generalized KV solutions of the VM equations

and the associated envelope equations for high-intensity beams in an uncoupled lattice. It

includes the classical KV solution as a special case. For a given uncoupled lattice and beam

line density, the distribution function and the envelope equations are specified by ten free

parameters. The class of solutions derived here captures a wider range of envelope dynamics

for high-intensity beams, and thus provides us with a new theoretical tool to investigate the

dynamics of high-intensity beams in an uncoupled transverse focusing lattice.
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