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A new integrable nonlocal nonlinear Schrödinger equation is introduced. It possesses a Lax pair
and an infinite number of conservation laws and is PT -symmetric. The inverse scattering transform
and scattering data with suitable symmetries are discussed. A method to find pure soliton solutions
is given. An explicit breathing one soliton solution is found. Key properties are discussed and
contrasted with the classical NLS equation.

Introduction. In the study of nonlinear wave propaga-
tion exactly solvable models play exceptional role. There
are many physically important integrable equations. Ex-
amples include small amplitude waves in shallow wa-
ter where the Korteweg-deVries (KdV) equation [1] and
its multidimensional analog, the Kadomtsev-Petviashvili
equation [2] arise; in generic weakly nonlinear disper-
sive systems, in the quasi-monochromatic limit the in-
tegrable cubic nonlinear Schrödinger equation [3] is ap-
plicable. Furthermore, in nonlinear optics the integrable
cubic nonlinear Schrödinger equation is a key equation
describing optical wave propagation in Kerr media [4, 5].
Indeed there are many physically significant integrable
systems [6] which apply to diverse problems in fluid me-
chanics, electromagnetics, gravitational waves, elasticity,
fundamental physics and lattice dynamics, to name but
a few.
Generally speaking integrability is established once an

infinite number of constants of motion or an infinite num-
ber of conservation laws are obtained. However consid-
erably more information about the solution can be ob-
tained if the inverse scattering transform (IST) can be
carried out [7]. Corresponding to rapidly decaying initial
data, IST provides a linearization and a class of explicit
solutions–i.e. solitons. The method associates a compat-
ible pair of linear equations (i.e. a Lax pair) with the
integrable nonlinear equation. One of the equations, the
scattering problem, is used to determine suitably analytic
eigenfunctions and transform the initial data to appropri-
ate scattering data. The other linear equation serves to
determine the evolution of the scattering data. Using the
analytic behavior of the eigenfunctions an inverse scatter-
ing problem, or linear Riemann-Hilbert (RH) problem, is
constructed. With the time dependence of the scattering
data one can find the solution of the nonlinear evolution
equation from the inverse or RH problem. There are
many books describing the IST method cf. [8–10].
In this Letter, the following nonlocal nonlinear

Schrödinger equation is introduced and investigated in
detail

iqt(x, t) = qxx(x, t)± 2q(x, t)q∗(−x, t)q(x, t) , (1)

where ∗ denotes complex conjugation and q(x, t) is a com-

plex valued function of the real variables x and t. Eq. (1)
admits a linear (Lax) pair formulation and possesses an
infinite number of conservation laws, hence it is an in-
tegrable system. Via the inverse scattering transform,
corresponding to rapidly decaying initial data, one can
linearize the equation and obtain solutions to Eq. (1) in-
cluding pure solitons solutions. Some of the important
properties of the nonlocal NLS equation are contrasted
with the classical NLS equation where the nonlocal non-
linear term q∗(−x, t) is replaced by q∗(x, t). Indeed we
note that both equation (1) and the classical NLS share
the symmetry that when x→ −x, t→ −t and a complex
conjugate is taken, then the equation remains invariant.
Thus, the new nonlocal equation is PT symmetric [11]
which, in the case of classical optics, amounts to the in-
variance of the so-called self-induced potential cf. [12]
V (x, t) = q(x, t)q∗(−x, t) under the combined action of
parity and time reversal symmetry. Finally, wave prop-
agation in PT symmetric coupled waveguides/photonic
lattices has been experimentally observed in classical op-
tics [13–15].
Linear pair and the nonlocal NLS equation. We begin our
analysis by considering the following scattering problem
[8, 16]

vx =

(

−ik q(x, t)
r(x, t) ik

)

v , (2)

vt =

(

A B

C −A

)

v , (3)

where v is a two-component vector, v(x, t) =
(v1(x, t), v2(x, t))

T , q(x, t) and r(x, t) vanish rapidly
as x → ±∞, k is a spectral parameter and A =
2ik2 + iq(x, t)r(x, t) ,B = −2kq(x, t) − iqx(x, t) ,C =
−2kr(x, t)+ irx(x, t). The compatibility condition of sys-
tem (2) and (3) i.e., vxt = vtx yields

iqt(x, t) = qxx(x, t)− 2r(x, t)q2(x, t) , (4)

−irt(x, t) = rxx(x, t)− 2q(x, t)r2(x, t) . (5)
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Equation (1) is then obtained from system (4) and (5)
under the symmetry reduction

r(x, t) = ∓q∗(−x, t) . (6)

Importantly, the symmetry reduction (6) is new and leads
to a new class of nonlocal integrable PDEs including a
nonlocal NLS hierarchy. This is a special and remark-
ably simple reduction of the more general AKNS system
[7] which has not been previously found.
Infinite number of conserved quantities and conservation

laws. The infinite number of conserved quantities of (1)
can be derived as follows. We assume that q(x, t) de-
cays rapidly at infinity. Then solutions of the scattering
problem (2) can be defined. Indeed we define four eigen-
functions which satisfy the following boundary conditions

φ ∼

(

1
0

)

e−ikx , φ ∼

(

0
1

)

eikx , as x→ −∞

ψ ∼

(

0
1

)

eikx , ψ ∼

(

1
0

)

e−ikx , as x→ +∞ .

(7)

Note that φ is not the complex conjugate of φ. We use
φ∗ to denote complex conjugation of φ. If φ(x, t) =
(φ1(x, t), φ2(x, t))

T is the solution to (2) that satisfies
the above boundary conditions then, for Im k ≥ 0,
φ1(x, t)e

ikx is analytic and approaches 1 as x → ±∞.
Substituting φ1(x, t) = exp [−ikx+ ϕ(x, t)] into (2) we
find (after eliminating φ2) that the function µ(x, t) ≡
ϕx(x, t) satisfies the Riccati equation

q
∂

∂x

(

µ

q

)

+ µ2 − qr − 2ikµ = 0 . (8)

For Imk > 0 , lim|k|→∞ ϕ(x, k) = 0. Substituting the
expansion µ(x, k) =

∑∞
n=0 µn(x, t)/(2ik)

n+1 into (8) to
find µ0 = −qr, µ1 = −qrx and a recursion relation for
any n ≥ 1 cf.[8]. From (2) it follows that the scattering
data a(k) ≡ limx→+∞ φ1(x, t)e

ikx is time-independent.
Since ϕ(x, t) vanishes as x→ −∞ we conclude that Cn ≡
∫ +∞
−∞ µn(x, t)dx are time-independent and constitute an
infinite number of constants of motion. The first few
global conservation laws are listed below (here σ = ∓1):

C0 =

∫ +∞

−∞
q(x, t)q∗(−x, t)dx ,

C1 =

∫ +∞

−∞
[qx(x, t)q

∗(−x, t) + q(x, t)q∗x(−x, t)] dx ,

C2 =

∫ +∞

−∞

[

qx(x, t)q
∗
x(−x, t)− σq2(x, t)q∗2(−x, t)

]

dx .

In the context of PT symmetric classical optics, the
quantity C0 is reffered to as the “quasipower”. We

also note that equation (1) is an integrable Hamil-
tonian system with Hamiltonian given by C2.The lo-
cal conservation laws (both densities and fluxes) can
also be derived from the linear pair. They are given
by ∂tµn(x, t) + i∂xFn(x, t) = 0 where the fluxes are

Fn(x, t) = qx(x,t)
q(x,t) µn(x, t) − µn+1(x, t), n = 0, 1, 2, · · · .

The first two local conservation laws are

∂t [q(x, t)q
∗(−x, t)]

+ i∂x [q(x, t)q
∗
x(−x, t) + q∗(−x, t)qx(x, t)] = 0 ,

∂t [q(x, t)q
∗
x(−x, t)]

+ i∂x[q
∗
x(−x, t)qx(x, t) + q(x, t)q∗xx(−x, t)

− σq2(x, t)q∗2(−x, t)] = 0 .

Direct scattering problem. We define the functions
M(x, k) = eikxφ(x, k), M(x, k) = e−ikxφ(x, k) and
N(x, k) = e−ikxψ(x, k), N(x, k) = eikxψ(x, k) satis-
fying constant boundary conditions induced from (7).
One can then obtain an integral representations for the
above functions and show that M(x, k), N(x, k) are ana-
lytic functions in the upper half complex plane whereas
M(x, k), N (x, k) are analytic functions in the lower half
complex plane [16]. The solutions φ(x, k) and φ(x, k) of
the scattering problem (2) with the boundary conditions
(7) are linearly independent. This follows from the fact
that the Wronskian, W (u, v) ≡ u1v2 − u2v1 of any two
solutions u and v to (2) is independent of x. Similar ar-
guments hold for ψ(x, k) and ψ(x, k). Therefore because
the scattering problem (2) is a second order linear ODE,
the pairs {φ, φ} and {ψ, ψ} are linearly dependent and
one can express one set of basis in terms of the other:

Φ(x, k) = S(k)Ψ(x, k) , (9)

where Φ(x, k) ≡ (φ(x, k), φ(x, k)), Ψ(x, k) ≡
(ψ(x, k), ψ(x, k)) and S(k) is the scattering matrix

S(k) =

(

a(k) b(k)

b(k) a(k)

)

. (10)

Then the scattering data are expressed as a(k) =
W (φ(x, k), ψ(x, k)), a(k) = W (ψ(x, k), φ(x, k)), b(k) =
W (ψ(x, k), φ(x, k)), b(k) = W (φ(x, k), ψ(x, k)). More-
over, it can be shown that a(k), a(k) are respectively an-
alytic functions in the upper/lower half complex plane.
In general, b(k), b(k) need not be analytic anywhere. As
stated above, the nonlocal NLS equation (1) is a spe-
cial case of the system (4) and (5) under the symmetry
reduction r(x, t) = ∓q∗(−x, t). This symmetry in the po-
tential induces a symmetry in the eigenfunctions that in
turn imposes a symmetry in the scattering data. Indeed,
if (φ1(x, k), φ2(x, k))

T satisfies Eq. (2) and the symmetry
(6) holds, then (φ∗2(−x,−k

∗),±φ∗1(−x,−k
∗))T also satis-

fies the scattering problem (2). Similar symmetry result
holds for φ(x, k). Therefore, because the solutions of the
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scattering problem (9) are uniquely determined by their
respective boundary conditions (7) we obtain the impor-
tant symmetry relations valid for r(x) = ∓q∗(−x)

N(x, k) = ΛM∗(−x,−k∗),

N(x, k) = Λ−1M
∗
(−x,−k∗),

(11)

where Λ is a 2×2 matrix with zeros on the main diagonal
and 1,±1 on the lower and upper diagonal respectively.
From the Wronskian representations for the scattering
data it follows a(k) = a∗(−k∗) , a(k) = a∗(−k∗) and
b(k) = ∓b∗(−k∗). These relations imply that if kj is a
zero (eigenvalue) of a(k) then −k∗j is a zero of a(k). Sim-

ilarly, if kj is a zero of a(k) so is −k
∗
j . In what follows, we

assume that the eigenvalues kℓ, kℓ are only on the imag-
inary axis.
Inverse scattering problem: Left-right RH approach. The
inverse problem consists of constructing the potential
functions r(x, t) and q(x, t) from the scattering data (re-

flection coefficients) ρ(k, t) = e−4ik2tb(k, 0)/a(k, 0) and

ρ(k, t) = e4ik
2tb(k, 0)/a(k, 0) defined on Imk = 0 as well

as the eigenvalues kj , kj and norming constants (in x)
Cj(t), Cj(t). Hereafter, for simplicity of notation, we sup-
press the time dependence. Using the RH approach, from
equation (9) one can find equations governing the eigen-
functions N(x, k), N(x, k)

N(x, k) =

(

1
0

)

+

J
∑

j=1

Cje
2ikjxN(x, kj)

k − kj

+
1

2πi

∫ +∞

−∞

ρ(ζ)e2iζxN(x, ζ)

ζ − (k − i0)
dζ , (12)

N(x, k) =

(

0
1

)

+
J
∑

j=1

Cje
−2ikjxN(x, kj)

k − kj

−
1

2πi

∫ +∞

−∞

ρ(ζ)e−2iζxN(x, ζ)

ζ − (k + i0)
dζ . (13)

The time evolution of the norming constants are given

by Cj(t) = Cj(0)e
−4ik2

j t, Cj(t) = Cj(0)e
4ik

2

j t. To close
the system we substitute k = kℓ and k = kℓ in (12) and
(13) respectively and obtain a linear algebraic integral
system of equations that solve the inverse problem for
the eigenfunctions N(x, k) and N(x, k). To account for
the symmetry condition (6), we view system (9) as a
left scattering problem; we supplement it with the right
scattering problem

Ψ(x, k) = S(k)Φ(x, k) , (14)

where

S(k) =

(

α(k) β(k)
β(k) α(k)

)

. (15)

In the same way as for the left RH above, we can formu-
late the corresponding RH problem on the right and find
the following linear integral equations which govern the
functions M(x, k),M(x, k):

M(x, k) =

(

1
0

)

+

J
∑

ℓ=1

Bℓe
2ikℓxM(x, kℓ)

k − kℓ

−
1

2πi

∫ ∞

−∞

R(ζ)e2iζxM(x, ζ)

ζ − (k + i0)
dζ , (16)

M(x, k) =

(

0
1

)

+

J
∑

ℓ=1

Bℓe
−2ikℓxM(x, kℓ)

k − kℓ

+
1

2πi

∫ ∞

−∞

R(ζ)e−2iζxM(x, ζ)

ζ − (k − i0)
dζ , (17)

where R(k) = β(k)/α(k) and R(k) = β(k)/α(k)
are the reflection coefficients. The time evolution of
the norming constants (in x) are given by Bℓ(t) =

Bℓ(0)e
4ik2

ℓ t, Bℓ(t) = Bℓ(0)e
−4ik

2

ℓ t. From the symmetry

relation (11) it follows that Bℓ = ∓C∗
ℓ and Bℓ = ∓C

∗
ℓ .

Using the relation between the two scattering matri-
ces, i.e., S(k) = S−1(k) we find R∗(−k) = ±ρ(k) and

R
∗
(−k) = ±ρ(k), k is real. To close the system we sub-

stitute k = kj and k = kj in (16) and (17) respectively
and obtain a linear algebraic integral system of equa-
tions that solve the inverse problem for the eigenfunctions
M(x, k),M(x, k). It is also interesting to note that at the
eigenvalues kℓ, kℓ the eigenfunctions satisfy the relation

N2(x, kℓ)N
∗
2 (−x, kℓ) = N1(x, kℓ)N

∗
1 (−x, kℓ) , (18)

M2(x, kℓ)M
∗
2(−x, kℓ) =M1(x, kℓ)M

∗
1(−x, kℓ) . (19)

Recovery of the potentials. To reconstruct the
potentials q(x), r(x) we compare the asymp-
totic expansions of Eq. (12) and (13) to that of
M(x, k), N (x, k),M(x, k), N(x, k) at large k and use the
symmetry relation (11) between the eigenfunctions to
find

r(x) = −2i

J
∑

j=1

Cje
2ikjxN2(x, kj)

+
1

π

∫ +∞

−∞
ρ(ζ)e2iζxN2(x, ζ)dζ , (20)

q(x) = ∓2i

J
∑

ℓ=1

C∗
ℓ e

2ik∗

ℓ xN∗
2 (−x, kℓ)

∓
1

π

∫ ∞

−∞
ρ∗(ζ)e2iζxN∗

2 (−x, ζ)dζ . (21)

From equations (20) and (21) it is now obvious that the
symmetry r(x) = ∓q∗(−x) is automatically preserved.
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Soliton solutions. In the case where the scattering data
only comprise eigenvalues off the real axis and ρ(k) =
0, ρ(k) = 0 for all k, the inverse scattering system (12),
(13) with (16), (17) subject to the symmetry relations
(11) reduces to finite-dimensional linear algebraic equa-
tions forN(x, kj) andM(x, kj). Recall that, when r(x) =
∓q∗(−x), the eigenvalues appear in pairs {kj , −k

∗
j } and

{kj , −k
∗
j}. Thus, the one-soliton solution to the focus-

ing nonlocal NLS equation (1) (with a + sign), corre-
sponds to a single pure imaginary eigenvalue (J = J = 1)
of the form k1 = iη1 , k1 = −iη1 , η1 6= η1
where ηj > 0, j = 1, 2. Using equations (18) and (19)
we also find |C1(0)|

2 = |C1(0)|
2 = (η1 + η1)

2. Letting

C1(0) = |c1|e
i(θ1+π/2) and C1(0) = |c1|e

i(θ1+π/2), then
the most general one-soliton solution to Eq. (1) is given
by

q(x) = −
2(η1 + η1)e

iθ1e−4iη2

1
te−2η

1
x

1 + ei(θ1+θ1)e4i(η
2

1
−η2

1
)te−2(η1+η

1
)x
. (22)

The family of solutions (22) is characterized by four inde-
pendent parameters that breathes in time and eventually
develops a singularity in finite time t = ts at x = 0 with

ts =
(2n+ 1)π − θ1 − θ1

4(η21 − η21)
, n ∈ Z . (23)

As pointed out earlier, the classical NLS equation is re-
covered when the nonlocal nonlinear term q∗(−x) is re-
placed by q∗(x). In this regard, the one soliton solution
for the classical NLS equation is obtained from (22) by
letting η1 = η1 and C1(0) = −C∗

1 (0), i.e., θ1 + θ1 = 0.
A nonlocal NLS hierarchy. In this section, we discuss a
class of nonlocal nonlinear evolution equations associated
with the AKNS scattering problem (2) that are integrable
and solvable by IST. Following closely the derivation out-
lined in [8] we obtain

σ3ut(x, t) = iω (−2L)u(x, t) , (24)

where, for example, ω(ζ) = cζ2n, n is a positive integer,
c is constant and

L ≡
1

2i

(

∂x + 2rI+q −2rI+r
2qI+q −∂x − 2qI+r

)

, (25)

where I+ =
∫ +∞
x

dy is an integral operator. u(x, t) ≡

(r(x, t) , q(x, t))T and σ3 ≡ diag(1,−1) is a 2× 2 diago-
nal matrix and r(x, t) = ∓q∗(−x, t). An example is the
nonlocal NLS equation (1) which is obtained from (24) by
choosing ω(ζ) = −ζ2. Another example is the following
nonlocal PDE obtained from (24) using the dispersion
relation ω(ζ) = ζ4 and taking r(x, t) = ∓q∗(−x, t) :

iqt = qxxxx − 2qθ − 6 (qrqx)x + 6q3r2 , (26)

θ = qrxx + rqxx − qxrx . (27)

Note also, the function ω(k) is the dispersion relation
associated with the linear part of the evolution equation
under the substitution q ∼ exp(ikx− iωt).
Comparison with the classical NLS equation. In this part
we briefly contrast the properties of the nonlocal NLS (1)
with that of the classical (local) NLS equation:

iut = uxx ± 2|u|2u . (28)

Three different scenarios will be addressed all of which
concerning Eq. (28): (i) general and (ii) even initial con-
ditions posed on the whole real line and (iii) general ini-
tial conditions on the semi-infinite interval (x ≥ 0.) In
[3], it was shown that (28) is integrable on the whole
real line. Furthermore, it was found that the symmetries
of the eigenfunctions of the associated Zakharov-Shabat
scattering problem are such that the eigenfunctions in
the upper half complex plane are related to those in the
lower half plane. This is in sharp contrast to the non-
local case where the eigenfunctions at the upper/lower
half plane are not related. On the other hand, if one
restricts the class of initial conditions to be even (in x)
then one obtains extra symmetry conditions on the scat-
tering data that resembles the one we find. This leads
us to the important conclusion that soliton solutions to
(1) will have a classical NLS limit so long (28) admits an
even soliton solution. Finally, we point out that similar
symmetry results were obtained in [17] for the classical
NLS (28) on the semi-infinite interval.
Nonlocal Painlevé type equations. The Painlevé equa-
tions are certain class of nonlinear second-order complex
ordinary differential equations that normally arise as re-
ductions of the “soliton evolution equations” which are
solvable by IST cf. [6, 18, 19]. They are particularly in-
teresting due to their properties in the complex plane and
their associated integrability properties. In this section
we propose nonlocal analogues of Painlevé type equation.
There are two prototypes. First, look for a self similar
solution to the nonlocal NLS equation (1) of the form

q(x, t) =
1

(2t)1/2
f(z)eiν log t/2, z = x/(2t)1/2. (29)

where ν is a real constant. Then, upon substituting this
ansatz into (1) we find a nonlocal Painlevé type equation

fzz(z)− αf(z)− izfz(z) + 2σf2(z)f∗(−z) = 0 . (30)

where α = (ν + i) and σ = ∓1. It should be noted
that substituting the same ansatz (29) into the classical
NLS equation leads to the above equation (30) where
the nonlinear term is now evaluated at z; this equation
is of Painlevé type. Similarly, if we substitute q(x, t) =
1√
2
eiλtf(x), λ, f ∈ R into equation (1) we find

fxx(x) + f2(x)f(−x) − λf(x) = 0 . (31)

Equation (31) is a nonlocal analogue of the elliptic func-
tion associated with the classical (local) NLS equation
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where the the nonlinear term is now evaluated at x which
has an elliptic function solution. Elliptic functions are
known to be of Painlevé type; i.e. their solution has
movable poles, but no movable branch points.
Conclusion. A nonlocal nonlinear Schrödinger equation
is found from a new and simple reduction of the well-
known AKNS system. It has a Lax pair and an infi-
nite number of conservation laws. The inverse scattering
transform (IST) for decaying data is developed and a one
breathing soliton solution is found. The IST requires dif-
ferent scattering data symmetries than the classical NLS
equation. A nonlocal NLS hierarchy as well as novel non-
local Painlevé type equations are also derived.
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