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Do relativistic quantum scars in classically chaotic systems possess unique features that are not shared by
non-relativistic quantum scars? We report a class of relativistic quantum scars in massless Dirac fermion sys-
tems, whose phases return to the original values or acquire a2π change only after circulatingtwice about a
classical unstable periodic orbit. We name such scarschiral scars, the successful identification of which has
been facilitated tremendously by our development of an analytic, conformal-mapping based method to calculate
an unprecedentedly large number of eigenstates with high accuracy. We develop a semiclassical theory, which
indicates that the physical origin of chiral scars can be attributed to a combined effect of chirality intrinsic to
massless Dirac fermions and the geometry of the underlying classical orbit.
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A remarkable phenomenon in contemporary physics is
quantum scarring in classically chaotic systems. For a sys-
tem that exhibits fully developed chaos in the classical limit,
a typical trajectory will generate a uniform distribution in the
phase space and physical space as well. Naively one would
then expect the quantum wave functions to be uniform. It
was discovered by McDonald and Kaufmann [1] in 1979 in
their systematic study of the quantum eigenstates of the clas-
sical stadium billiard that the physical-space distributions of
the wavefunctions associated with many eigenenergies are
highly nonuniform. In fact, due to quantum interference, the
eigenstates tend to concentrate on various classically unsta-
ble periodic orbits. Such nonuniform distributions of quantum
wavefunctions in classically chaotic systems were later named
quantum scars by Heller [2], who also devised a random-
wave/interference model to explain the phenomenon. Semi-
classical theory was subsequently developed by Bogomolny
[3] and Berry [4], providing a comprehensive understanding
of the phenomenon. Quantum scarring in classically chaotic
systems has since attracted a great deal of attention [5].

Most existing works on quantum scarring were with re-
spect to non-relativistic quantum systems governed by the
Schrödinger equation [1–5]. In relativistic quantum systems,
the basic governing equation is the Dirac equation. The ques-
tion of whether scarring can occur in relativistic quantum sys-
tems exhibiting chaos in the classical limit is thus fundamental
in physics. This question was partially addressed in the con-
text of chaotic graphene [6] billiard [7], where pronounced
concentrations of the wave function about distinct classical
unstable periodic orbits were demonstrated in different energy
regimes. However, graphene is essentially a discrete-lattice
system with two non-equivalent Dirac points in the energy-
momentum [(E,k)] space. Although the electronic behavior
in the neighborhood of each Dirac point can be described by
the Dirac equation [6], physical processes such as reflection

from the system boundaries can couple the dynamics from the
two Dirac points. Thus, in a strict sense the underlying physics
in graphene is not exactly that given by the Dirac equation.
The scars uncovered in Ref. [7] are thus relativistic quantum
scars only in an approximate sense. Concerning the general is-
sue of relativistic quantum manifestations of classical chaos in
the framework governed by the Dirac equation, a pioneering
work was that by Berry and Mondragon [8]. They developed
a boundary-integral method to solve the massless Dirac equa-
tion (for neutrino) in closed domains such as that given by
the chaotic Africa billiard, but mainly addressed the issueof
energy-level statistics, although an integral formula waspro-
vided to calculate the eigenstates.

In this Letter, we address the following question: are there
characteristics of relativistic quantum scars which differ fun-
damentally from those associated with non-relativistic quan-
tum scars? To make possible our search for such characteris-
tics, we develop an analytic approach to calculate the eigen-
states of massless Dirac fermions in a broad class of chaotic
billiards by using the method of conformal mapping. In par-
ticular, for any shape in the class, a proper conformal mapping
can transform it to a shape for which the solutions of the Dirac
equation can be written down analytically. An inverse trans-
form of the solutions thus leads to eigenstates in the origi-
nal billiard. This method allows us to calculate an unprece-
dentedly large number of eigenvalues and eigenstates with
high accuracy. Taking advantage of this powerful method,
we have succeeded in identifying one such characteristic as-
sociated with the phase of the wavefunction. In particular,
in non-relativistic quantum systems, when a particle traverses
one cycle along a scarred orbit, the associated quantum phase
change is zero or2π. However, when we examine the var-
ious eigenstate solutions of the massless Dirac equation, we
find one subclass of scarred orbits for which one complete
itinerary brings about a phase change of onlyπ. In fact, it



2

takes two cycles for the phase of the wavefunction to become
2π and for the wavefunction returns completely to its origi-
nal value. This relativistic quantum phenomenon is originated
from the chirality of the massless Dirac fermions (will be ex-
plained later), and consequently we name such scarschiral
scars. We note that, despite the emergence of chiral scars,
majority of the scars are conventional in the sense that the
phase change associated with one cycle is2π. We develop a
semiclassical theory to understand the physical origin of chi-
ral scars.

Consider a massless spin-half particle in a finite domainD
in the planer = (x, y). Utilizing an infinite-mass term out-
side the domain to model the confinement of the particle mo-
tion withinD, we obtain the following Hamiltonian in the po-
sition representation:̂H = −i~vσ̂ · ∇+V (r)σ̂z , whereσ̂ =
(σ̂x, σ̂y) andσ̂z are Pauli matrices. The Hamiltonian̂H acts
on two-component spinor wave-functionψ(r) = [ψ1, ψ2]

T

and it has eigenvalueE, i.e., [−i~vσ̂ · ∇ + V (r)σ̂z ]ψ(r) =
Eψ(r). Some basic properties of the Dirac equation are the
following. First, the confinement condition of imposing in-
finite mass outsideD naturally takes into account the Klein
paradox for relativistic quantum particles. Second, the re-
duced spatial dimension and confinement breaks the time-
reversal symmetry of̂H , namely[T̂ , Ĥ ] 6= 0, whereT̂ =
iσyK̂, andK̂ denotes complex conjugate. Third, forV = 0
in the Dirac equation, there exist plane-wave solutions whose
positive-energy part has the following form:

ψk(r) =
1√
2

(

exp(−i θ
2
)

exp(i θ
2
)

)

exp(ik · r), (1)

wherek is a wave-vector that makes an angleθ with the x
axis.

To obtain solutions of the Dirac equation, a proper treat-
ment of the boundary condition is necessary. Letting the out-
ward unit normal ats ben(s) = [cos(α), sin(α)] (α being the
angle with thex-axis), making use of the hermiticity of̂H , and
definingj = vψ†σ̂ψ as the local relativistic current, we get
the vanishing current condition:j · n = 0 for any points. Re-
quiring the outward current to be zero cannot fix the boundary
condition uniquely but it entailsRe(exp(iα)ψ1/ψ2) = 0 for
all points. Using the boundary potential as in [8], we can ob-
tain the complete boundary condition:ψ2/ψ1 = i exp[iα(s)].

Consider chaotic billiards with analytic boundaries. An
elementary observation [9] is that, while the Dirac equation
together with the boundary condition are generally not sepa-

rable in the Cartesian coordinates, for circular domains ana-
lytic solutions can be written down in terms of both eigenval-
ues and eigenstate{µlm, ψlm(r, φ), l = 0,±1,±2, · · · ,m =
1, 2, · · · } (see Supplementary Materials). Thereby, given a
closed domain with analytic boundary, if a proper conformal
mapping can be identified to transfer the domain into a circle,
solutions can be explicitly obtained.

The billiard domainD can be defined as a conformal
transformation of the unit disc in thew−plane, as shown
in Fig. 1, i.e.,u(x, y) + iv(x, y) = w(z) ≡ w(reiφ) (for

y

x u

v

w(z)

z-plane w-plane

−iσ̂ · ∇ −iσ̂ · ∇uv

φ

FIG. 1: (Color online) Conformal transformation from the unit disc
in z = x+ iy (z-plane) to the billiard domainD in w = u+ iv (w-
plane). The boundary is generated by the mapping function Eq. (3)
with parameterβ = 0.49.

r ∈ [0, 1]), wherew(z) is an analytic function with non-
vanishing derivative inD. The boundary can be defined para-
metrically byu = Re[w(eiφ)], v = Im[w(eiφ)]. The basic
problem is then to solve the following stationary Dirac equa-
tion: −iσ̂ · ∇uvΨ = kΨ, together with the boundary con-
dition Ψ2/Ψ1|∂D

= ieiα, whereΨ denotes the spinor wave-
function. When being acted upon by the operator−iσ̂ · ∇uv,
the Dirac equation becomes−∆uv1Ψ = k2Ψ. Using the con-
formal mapping∆ = |dw/dz|2∆uv to transform the Dirac
equation to the unit disc in thez-plane, together with the def-
inition Ψ′(r) = Ψ(u, v), we obtain the following form of the
Dirac equation in the polar coordinates:∆Ψ′+k2T (r, φ)Ψ′ =
0, whereT (r, φ) = |dw/dz|2. To solve this equation, we ex-
pandΨ′ in terms of eigenfunctions of the unit disc:Ψ′(r, φ) =
∑∞

l=−∞

∑∞
m=1

clmψlm(r, φ), whereclm are the expansion
coefficients. Substituting this into the Dirac equation, wehave
νlm/k

2 −
∑

l′m′ Mlml′m′νl′m′ = 0, whereνlm = µlmclm,
and

Mlml′m′ =
Nl′m′Nlm

µl′m′µlm

∫ 2π

0

dφ exp{i(l′ − l)φ}
∫ 1

0

drT (r, φ) {Jl(µlmr)Jl′ (µl′m′r) + Jl+1(µlmr)Jl′+1(µl′m′r)} . (2)

Once the eigenvaluesλn and eigenvectorsν of the matrix (Mlml′m′) have been obtained, we get the complete solutions
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FIG. 2: (Color online) Panels (a)-(c) show the energy levelsEm versus the sequence numberm for the scar types 2, 4-I, and 4-II in Table I,
respectively. Panels (d-f) areη versusm calculated from Eq. (4), where the relevant data are from panels (a-c), respectively. Similarly, results
for the scar types 3, 5-I, and 5-II are shown in panels (g-l).

of the Dirac equation through the relationskn = 1/
√
λn

and clm = νlm/µlm. A practical limitation is that, in ac-
tual computations, a truncated basis{ψlm(r, φ)}, lmin ≤ l ≤
lmax, 1 ≤ m ≤ mmax is used. Thus extremely high energy
levels and the associated eigenstates cannot be determinedac-
curately. Nonetheless, our conformal-mapping based method
can yield an unprecedentedly large number of energy levels
and the corresponding eigenstates with extremely high accu-
racy.

To demonstrate the workings of our conformal-mapping
based method to calculate eigenenergies and eigenstates of
the Dirac equation, we choose the following complex func-
tionw(z) as a quadratic conformal map:

w(z) =
1

√

1 + 2β2
(z + βz2), β ∈ [0,

1

2
) (3)

to determine the shape of the billiard in which a massless

fermion is confined. Forβ = 0.49, a previous work on the
classical dynamics of the billiard [10] demonstrated the pres-
ence of chaos. The quadratic conformal map also has the ad-
vantage of amenability to analytic treatment where, in partic-
ular, theφ integration in Eq. (2) becomes straightforward and
the matrixMlml′m′ becomes nearly diagonal inl. Compari-
son of the energy levels calculated by our conformal-mapping
method with those from the boundary-integral method [8] re-
veals a remarkably excellent agreement. Further validation of
our method can be established by calculating and analyzing
the universal behaviors of the various level-spacing statistics
in chaotic billiards (see Supplementary Materials).

We now present the reasoning and calculations that lead to
the discovery of chiral scars. After examining a large num-
ber of relativistic quantum scars for massless Dirac fermion
in chaotic billiards, we notice that a certain scarring pattern,
once having appeared, tends to reappear at a different en-
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ergy value. This can be understood by using semiclassical
theory [11], which states that two repetitive scars associated
with the same classical periodic orbit can occur when the ac-
tion difference satisfies|∆S| = 2πn~ (n = 1, 2, · · · ), where
S =

∮

pdq = ~kL, andL is the length of a given periodic
orbit. It can be inferred that, if one scar already appears, say,
atk0, the eigenfunctions at the wave numberkn = k0 ± nδk
will most likely scar, whereδk = 2π/L. We define

η(n) =
|kn − k0|

δk
−
[ |kn − k0|

δk

]

, (4)

where[x] denotes the largest integer less thanx. According
to the semiclassical theory for non-relativistic quantum sys-
tems, the quantityη, by its definition, should exhibit only two
distinct values: either close to 0 or 1. To calculate the value
of η, some key characteristics of the corresponding scars are
needed. Table I lists some of the key features of the calculated
scars. Using the data of the most typical types of scars, i.e.,
scar types 2, 3, 4 and 5 in Table I, we calculate their values
of η(n) from Eq. (4). Figures 2(a-l) show the results. We see
that, for scar types 2 and 4,η(n) exhibits the two values, i.e.,
0 and 1, as can be anticipated from the semiclassical theory.
However, for scar types 3 and 5,η can attain the additional
value of 1/2. This implies that, for this type of scars, the con-
ventional semiclassical theory has to be modified.

TABLE I: Characteristics of the relativistic quantum scars.

Scar indexa L δk k0 Collected number

2 4.2425 1.4810 167.3225 104
4-I 7.5385 0.8335 219.8747 73

4-II 5.7993 1.0843 152.2197 57

3 5.3764 1.1687 217.0473 104
5-I 8.4725 0.7416 189.2712 18

5-II 9.7321 0.6456 169.0422 12

aThe relativistic quantum scars are labeled asn, the period of the corre-
sponding classical periodic orbit, if no other configurations exist. For orbits
of the same period but with different configurations, Roman numerals are
used.

The origin of the type of “abnormal” scars that do not
obey the conventional semiclassical quantization rules can
be understood by exploring the chirality for massless Dirac
fermions and the associated phase changes. In particular,
for a classical periodic orbit, the chirality corresponds to the
cumulative effect of reflections at the billiard wall. Con-
sider one pair of orbits that close on themselves afterN
bounces but with opposite orientation, as shown schematically
in Fig. 3. Based on the plane-wave description in Eq. (1),
after traversing the orbit once the associated phase change
is Ω = 1

2
(θN − θ0) = Λπ, whereΛ is an integer, and

the total rotation(θn − θ0) can be obtained by the reflec-
tion law θn+1 = π + 2α − θn for n = 0, 1, · · · , N . De-
fineΩ+ − Ω− = (Λ+ − Λ−)π as the difference in the phase

+

(b)(a)

_

FIG. 3: (Color online.) Illustration of a pair of orbits withopposite
orientations.

changes between the pair of+ and− orbits. It was shown by
Berry and Mondragon [8] thatΩ+−Ω− = 2Λ+π for evenN ,
andΩ+ − Ω− = π for oddN . Since chirality corresponds to
the situation of(Λ+−Λ−) being odd, where the two orbits in
the pair enclose themselves with an opposite sign change, the
orbit with even number of bounces is not chiral but the orbit
with odd number of bounces is. Chirality can have a remark-
able effect on scarring. To quantify this we define an effec-
tive periodic-orbit lengthL∗ = τL, whereL is the original
length of the periodic orbit andτ is a correctional factor. The
non-chiral orbits with even number of bounces correspond to
τ = 1. However, the chiral orbits correspond toτ = 2. This
means that, for chiral orbits, the quantum states as determined
by the Dirac equation return to themselves after two succes-
sive circulations along the classical orbit. When the modified
length is used in the semiclassical theory for type-3 scars,the
values ofη for all scars become concentrated on 0 and 1.

In summary, we have developed an analytic method based
on conformal mapping to solve the massless Dirac equation
in a broad class of closed chaotic domains. The advantage is
that significantly more eigenstates can be calculated to high
accuracy as compared with the previous boundary-integral or
finite-difference methods. Empowered by our method, we
have found a new class of relativistic quantum scars, chiral
scars whose quantum phases return to their original values
only after two circulations around the underlying classical un-
stable periodic orbits. The physical origin of chiral scarscan
be attributed to chirality of massless Dirac fermions coupled
with the particular geometry of the underlying periodic orbit.
Such scars are uniquely relativistic quantum scars and find no
counterparts in non-relativistic quantum systems.
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