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Do relativistic quantum scars in classically chaotic systgpossess unique features that are not shared by
non-relativistic quantum scars? We report a class of wétitt quantum scars in massless Dirac fermion sys-
tems, whose phases return to the original values or acquire change only after circulatingwice about a
classical unstable periodic orbit. We name such sciairsl scars, the successful identification of which has
been facilitated tremendously by our development of anysicatonformal-mapping based method to calculate
an unprecedentedly large number of eigenstates with higlracy. We develop a semiclassical theory, which
indicates that the physical origin of chiral scars can bebattted to a combined effect of chirality intrinsic to
massless Dirac fermions and the geometry of the underlyasgical orbit.

PACS numbers: 05.45.Mt,03.65.Pm,02.60.L},02.60.Cb

A remarkable phenomenon in contemporary physics igrom the system boundaries can couple the dynamics from the
guantum scarring in classically chaotic systems. For a syswo Dirac points. Thus, in a strict sense the underlying physics
tem that exhibits fully developed chaos in the classicaitlim in graphene is not exactly that given by the Dirac equation.
a typical trajectory will generate a uniform distributionthe ~ The scars uncovered in Ref. [7] are thus relativistic quantu
phase space and physical space as well. Naively one wouktars only in an approximate sense. Concerning the geseral i
then expect the quantum wave functions to be uniform. Isue of relativistic quantum manifestations of classicalashin
was discovered by McDonald and Kaufmann [1] in 1979 inthe framework governed by the Dirac equation, a pioneering
their systematic study of the quantum eigenstates of tte clawork was that by Berry and Mondragon [8]. They developed
sical stadium billiard that the physical-space distribng of  a boundary-integral method to solve the massless Dirac-equa
the wavefunctions associated with many eigenenergies at&®n (for neutrino) in closed domains such as that given by
highly nonuniform. In fact, due to quantum interference th the chaotic Africa billiard, but mainly addressed the isefie
eigenstates tend to concentrate on various classicalliguns energy-level statistics, although an integral formula weas
ble periodic orbits. Such nonuniform distributions of qttan  vided to calculate the eigenstates.
wavefunctions in classically chaotic systems were latereth
quantum scars by Heller [2], who also devised a random- In this Letter, we address the following question: are there
wave/interference model to explain the phenomenon. Semgharacteristics of relativistic quantum scars which difte-
classical theory was subsequently developed by Bogomolngamentally from those associated with non-relativistiargu
[3] and Berry [4], providing a comprehensive understandingum scars? To make possible our search for such characteris-
of the phenomenon. Quantum scarring in classically chaotitics, we develop an analytic approach to calculate the eigen
systems has since attracted a great deal of attention [5]. states of massless Dirac fermions in a broad class of chaotic

billiards by using the method of conformal mapping. In par-

Most existing works on quantum scarring were with re-ticular, for any shape in the class, a proper conformal mrappi
spect to non-relativistic quantum systems governed by thean transform it to a shape for which the solutions of the ®ira
Schrodinger equation [1-5]. In relativistic quantum syss,  equation can be written down analytically. An inverse trans
the basic governing equation is the Dirac equation. The-quesorm of the solutions thus leads to eigenstates in the origi-
tion of whether scarring can occur in relativistic quantys-s  nal billiard. This method allows us to calculate an unprece-
tems exhibiting chaos in the classical limitis thus fundatak  dentedly large number of eigenvalues and eigenstates with
in physics. This question was partially addressed in the conhigh accuracy. Taking advantage of this powerful method,
text of chaotic graphene [6] billiard [7], where pronouncedwe have succeeded in identifying one such characteristic as
concentrations of the wave function about distinct cladsic sociated with the phase of the wavefunction. In particular,
unstable periodic orbits were demonstrated in differeatgy  in non-relativistic quantum systems, when a particle trse®
regimes. However, graphene is essentially a discretiedatt one cycle along a scarred orbit, the associated quantune phas
system with two non-equivalent Dirac points in the energy-change is zero o2x. However, when we examine the var-
momentum (£, k)] space. Although the electronic behavior ious eigenstate solutions of the massless Dirac equatien, w
in the neighborhood of each Dirac point can be described bfind one subclass of scarred orbits for which one complete
the Dirac equation [6], physical processes such as reftectioitinerary brings about a phase change of only In fact, it



takes two cycles for the phase of the wavefunction to becomeable in the Cartesian coordinates, for circular domaires an
27 and for the wavefunction returns completely to its origi- lytic solutions can be written down in terms of both eigenval
nal value. This relativistic quantum phenomenonis oritgda ues and eigenstatgu;,,, Vi, (r, ¢),l = 0,+1,£2, -+ ,m =
from the chirality of the massless Dirac fermions (will be ex 1,2,---} (see Supplementary Materials). Thereby, given a
plained later), and consequently we name such sdarsl closed domain with analytic boundary, if a proper conformal
scars. We note that, despite the emergence of chiral scarsnapping can be identified to transfer the domain into a gircle
majority of the scars are conventional in the sense that theolutions can be explicitly obtained.
phase change associated with one cycleris We develop a The billiard domainD can be defined as a conformal
semiclassical theory to understand the physical origirhdf ¢  transformation of the unit disc in the—plane, as shown
ral scars. in Fig. 1, i.e.,u(z,y) + iv(z,y) = w(z) = w(re'®) (for
Consider a massless spin-half particle in a finite doniain
in the planer = (z,y). Utilizing an infinite-mass term out-
side the domain to model the confinement of the particle mo
tion within D, we obtain the following Hamiltonian in the po-
sition representationl = —ihwé - V4V ()., whereg =
(64,0,) andé, are Pauli matrices. The Hamiltonidi acts
on two-component spinor wave-functian(r) = [1, 19]T
and it has eigenvaluk, i.e.,[—ilvé - V + V(r)o, | (r) =
Ev(r). Some basic properties of the Dirac equation are the
following. First, the confinement condition of imposing in-
finite mass outsidé naturally takes into account the Klein
paradox for relativistic quantum particles. Second, the reégig. 1: (Color online) Conformal transformation from theituisc
duced spatial dimension and confinement breaks the timen > = x + iy (2-plane) to the billiard domait in w = u + v (w-
reversal symmetry of/, namely [T, H] # 0, whereT = plane). The boundary is generated by the mapping function(3Eq
io, K, and K denotes complex conjugate. Third, fgr= 0 with parametef = 0.49.
in the Dirac equation, there exist plane-wave solutionssgho
positive-energy part has the following form:

z-plane  y ) w-plane

1 [ exp(—if) _ r € [0,1]), wherew(z) is an analytic function with non-
Vr(r) = 2 < ) exp(ik - 1), (1) vanishing derivative irD. The boundary can be defined para-
metrically byu = Re[w(e*®)],v = Im[w(e!?)]. The basic

wherek is a wave-vector that makes an anglevith the « problem is then to solve the following stationary Dirac equa
axis. tion: —ié - V., ¥ = k¥, together with the boundary con-

To obtain solutions of the Dirac equation, a proper treat-dition Wy /U4 |5, = ie’®, where¥ denotes the spinor wave-
ment of the boundary condition is necessary. Letting the outfunction. When being acted upon by the operatoé - V .,
ward unit normal at ben(s) = [cos(a), sin(a)] (o being the  the Dirac equation becomesA,, 1¥ = £?W. Using the con-
angle with thez-axis), making use of the hermiticity éf, and ~ formal mappingA = |dw/dz|?A,., to transform the Dirac
definingj = vy!é4 as the local relativistic current, we get equation to the unit disc in theplane, together with the def-
the vanishing current conditiog:- n = 0 for any points. Re-  inition ¥/(r) = ¥(u, v), we obtain the following form of the
quiring the outward current to be zero cannot fix the boundarirac equation in the polar coordinateS¥’ + k27 (r, ¢) ¥’ =
condition uniquely but it entail®e(exp(ia )11 /102) = 0 for 0, whereT'(r, ¢) = |dw/dz|. To solve this equation, we ex-
all points. Using the boundary potential as in [8], we can ob-pand¥’ in terms of eigenfunctions of the unit dis€?(r, ¢) =
tain the complete boundary condition; /1 = iexplia(s)]. Y2 S0 cimim(r, @), Wherec,, are the expansion

Consider chaotic billiards with analytic boundaries. An coefficients. Substituting this into the Dirac equation hage
elementary observation [9] is that, while the Dirac equatio v;,,/k* — Yt Mimtme Virmy = 0, Wherevy, = fmcim,
together with the boundary condition are generally not sepaand

N/m/Nm 2 ) 1
Mymrm: = ﬁ/ dgexp{i(l' — l)¢}/ drT(r, @) {Ji(pimr) Jv (prmer) + Jiga (pimr) Jo w1 (prme )} - (2)
'm/ m 0 0

Once the eigenvalues, and eigenvectory of the matrix (M) have been obtained, we get the complete solutions
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FIG. 2: (Color online) Panels (a)-(c) show the energy levgls versus the sequence numberfor the scar types 2, 4-1, and 4-11 in Table I,
respectively. Panels (d-f) areversusm calculated from Eq. (4), where the relevant data are froneigaa-c), respectively. Similarly, results
for the scar types 3, 5-1, and 5-II are shown in panels (g-I).

of the Dirac equation through the relatiohs = 1/\/A,  fermion is confined. Fop = 0.49, a previous work on the
and ¢y, = vim/um-. A practical limitation is that, in ac- classical dynamics of the billiard [10] demonstrated thespr
tual computations, a truncated basig,,, (r, ¢) }, lmin < 1 < ence of chaos. The quadratic conformal map also has the ad-
lmax, 1 < m < mpay is used. Thus extremely high energy vantage of amenability to analytic treatment where, inipart
levels and the associated eigenstates cannot be deteratined ular, theg integration in Eq. (2) becomes straightforward and
curately. Nonetheless, our conformal-mapping based ndethahe matrix4;,,,;-,,,» becomes nearly diagonal in Compari-
can yield an unprecedentedly large number of energy levelson of the energy levels calculated by our conformal-magppin
and the corresponding eigenstates with extremely high-accumethod with those from the boundary-integral method [8] re-
racy. veals a remarkably excellent agreement. Further validatio

To demonstrate the workings of our conformal-mappingour method can be established by calculating and analyzing
based method to calculate eigenenergies and eigenstatestbé& universal behaviors of the various level-spacing sttesi
the Dirac equation, we choose the following complex func-in chaotic billiards (see Supplementary Materials).

tion w(z) as a quadratic conformal map: We now present the reasoning and calculations that lead to
1 1 the discovery of chiral scars. After examining a large num-
w(z) = —=—==(z+ B8z%),8 € [0, 5) (3)  ber of relativistic quantum scars for massless Dirac fermio
1+25 in chaotic billiards, we notice that a certain scarring @t

to determine the shape of the billiard in which a massles®nce having appeared, tends to reappear at a different en-



ergy value. This can be understood by using semiclassici @
theory [11], which states that two repetitive scars assedia

with the same classical periodic orbit can occur when the ac

tion difference satisfiegAS| = 27nh (n = 1,2,---), where

S = ¢ pdg = hkL, andL is the length of a given periodic + =
orbit. It can be inferred that, if one scar already appeang, s
at ko, the eigenfunctions at the wave numbgr= ko + ndk
will most likely scar, wherédk = 27 /L. We define

o |kn_k0| [lkn_k0|:|
n)= - )

(b)

4
n(n) ok Sk & . : : its Withoposi
FIG. 3: (Color online.) lllustration of a pair of orbits witbpposite
where[z] denotes the largest integer less thanAccording ~ orientations.
to the semiclassical theory for non-relativistic quantuysa-s

tems, the quantity, by its definition, should exhibit only two

distinct values: either close to 0 or 1. To calculate the @alu changes between the pair-efand— orbits. It was shown by

of n, some key characteristics of the corresponding scars aiBerry and Mondragon [8] that, — Q_ = 2A .7 for evenN,
needed. Table | lists some of the key features of the caledilat andQ. — Q_ = = for odd N. Since chirality corresponds to
scars. Using the data of the most typical types of scars, i.eie sjtuation of A, — A_) being odd, where the two orbits in
scar types 2, 3, 4 and 5 in Table |, we calculate their valuegye pajr enclose themselves with an opposite sign change, th
of 5(n) from Eq. (4). Figures 2(a-l) show the results. We seeqhit with even number of bounces is not chiral but the orbit
that, for scar types 2 and 4(n) exhibits the two values, i.e., yith odd number of bounces is. Chirality can have a remark-
0 and 1, as can be anticipated from the semiclassical theoryy e effect on scarring. To quantify this we define an effec-
However, for scar types 3 and f,can attain the additional ;e periodic-orbit lengthL* = L, whereL is the original

valueof 1/2. This implies that, for this type of scars, the con- |ength of the periodic orbit and is a correctional factor. The

ventional semiclassical theory has to be modified. non-chiral orbits with even number of bounces correspond to
7 = 1. However, the chiral orbits correspond#o= 2. This
TABLE I: Characteristics of the relativistic quantum scars means that, for chiral orbits, the quantum states as detedni
by the Dirac equation return to themselves after two succes-
Scarinde? L Sk ko Collected number  sjye circulations along the classical orbit. When the medifi
2 4.2425 1.4810 167.3225 104 length is used in the semiclassical theory for type-3 sthes,
4-1 7.5385 0.8335 219.8747 73 values ofy for all scars become concentrated on 0 and 1.
411 57993 1.0843 152.2197 57 In summary, we have developed an analytic method based
on conformal mapping to solve the massless Dirac equation
3 5.3764 1.1687 217.0473 104 in a broad class of closed chaotic domains. The advantage is
5| 84725 0.7416 189.2712 18 that significantly more eigenstates can be calculated tb hig
5.1 07321 0.6456 169.0422 12 accuracy as compared with the previous boundary-integral o

finite-difference methods. Empowered by our method, we
aThe relativistic quantum scars are labelednaghe period of the corre- have found a new class of relativistic quantum scars, chiral
sponding classical periodic orbit, if no other configuratieexist. For orbits scars whose guantum phases return to their original values
of the same period but with different configurations, Romamaerals are . . . ;
used. only after two circulations around the underlying claskica
stable periodic orbits. The physical origin of chiral sceas
The origin of the type of “abnormal” scars that do not be attributed to chirality of massless Dirac fermions cedpl

obey the conventional semiclassical quantization rules caWith the particular geometry of the underlying periodiciarb

be understood by exploring the chirality for massless Dirac>Uch scars are uniquely relativistic quantum scars and ind n

fermions and the associated phase changes. In particul&ounterparts in non-relativistic quantum systems.
for a classical periodic orbit, the chirality correspondstte This work was supported by NSFC (National Science Foun-
cumulative effect of reflections at the billiard wall. Con- dation of China) under Grant No. 11005053. LH and YCL

sider one pair of orbits that close on themselves after Were supported by AFOSR under Grant No. FA9550-12-1-

bounces but with opposite orientation, as shown schentfigtica 0095 and by ONR under Grant No. N00014-08-1-0627.
in Fig. 3. Based on the plane-wave description in Eq. (1),
after traversing the orbit once the associated phase change

is Q = 1(0ny — 6) = Am, whereA is an integer, and
the total rotation(d,, — 6y) can be obtained by the reflec-
tion law 0,1 = 4+ 2ae — 0,, forn = 0,1,--- , N. De-

fineQy — Q_ = (AL — A_)~w as the difference in the phase
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