
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Nonlinear Time Reversal in a Wave Chaotic System
Matthew Frazier, Biniyam Taddese, Thomas Antonsen, and Steven M. Anlage

Phys. Rev. Lett. 110, 063902 — Published  7 February 2013
DOI: 10.1103/PhysRevLett.110.063902

http://dx.doi.org/10.1103/PhysRevLett.110.063902


Nonlinear Time-Reversal in a Wave Chaotic System  

Matthew Frazier1, Biniyam Taddese1,2, Thomas Antonsen1,2, and Steven M. Anlage1,2 
1 Department of Physics, University of Maryland, College Park, MD  20742-4111 
2Department of Electrical and Computer Engineering, University of Maryland, College Park, MD  20742-
3285 

Abstract: Exploiting the time-reversal invariance and reciprocal properties of the lossless wave equation 
enables elegantly simple solutions to complex wave-scattering problems, and is embodied in the time-
reversal mirror. Here we demonstrate the implementation of an electromagnetic time-reversal mirror in a 
wave chaotic system containing a discrete nonlinearity. We demonstrate that the time-reversed nonlinear 
excitations reconstruct exclusively upon the source of the nonlinearity. As an example of its utility, we 
demonstrate a new form of secure communication, and point out other applications.  

PACS numbers: 05.45.Mt, 05.45.Vx, 41.20.Jb, 42.25.Dd,  
  
Wave chaos concerns the study of solutions to linear wave equations that display classical chaos in their 
short-wavelength limit.  Such systems are endowed with many universal wave properties, such as 
eigenvalue and scattering-matrix statistics, by virtue of their classically chaotic counterparts. [1] Although 
wave chaotic systems are strongly scattering and have complex behavior, they can be elegantly studied by 
exploiting the time-reversal invariance and reciprocal properties of the linear wave equation. [2-9] Adding 
objects with complex nonlinear dynamics to linear wave chaotic systems has only recently been 
considered, [10] and represents an exciting new direction of research. Here we examine a wave chaotic 
system with a single discrete nonlinear element, and create a new nonlinear electromagnetic time-reversal 
mirror that shows promise for both fundamental studies and novel applications. 
 
A time-reversal mirror works by taking advantage of the invariance of the lossless wave equation under 
time-reversal; for a time-forward solution of the wave equation representing a wave travelling in a given 
direction,  there is a corresponding time-reversed solution representing a wave travelling in the same 
direction backwards in time, or in the opposite direction forward in time. This can be realized by 
transmitting a waveform at a particular source location and recording the reverberating waveforms (sona) 
with an array of receivers; the recorded waveforms are reversed in time and retransmitted back from the 
receivers, propagating to and reconstructing a time-reversed version of the original waveform at the 
source [3]. Time-reversal mirrors have been demonstrated for both acoustic [2-9, 11, 12] and 
electromagnetic waves [6, 8, 13], and exploited for applications such as lithotripsy [2, 4], underwater 
communication [2, 14, 15], sensing perturbations [11, 12], and achieving sub-wavelength imaging [6-8, 
16].   

An ideal time-reversal mirror in an open environment would collect the forward-propagating wave at 
every point on a closed surface enclosing the transmitter, requiring a very large number of receivers.  The 
receiving array can be simplified, without significant loss of fidelity of the reconstruction, if there is a 
closed, ray-chaotic environment where a propagating wave (with wavelength much smaller than the size 
of the enclosure) will eventually reach every point in the environment, allowing the use of a single 
receiver to capture the signal to be time-reversed [9,11]. Reconstruction is possible even when only a 
small fraction of the transmitted energy is collected by the receiver. 
 

Now consider a discrete nonlinear element added to the otherwise linear environment. When a waveform 
is incident on the nonlinear element, excitations are formed at frequencies different from those in the 
initial pulse. These new excitations appear as a new transmission originating from the nonlinear element, 



which in principle should be time-reversible in their propagation, and behave similarly to the initial pulse. 
In particular, the nonlinear excitations should, upon time-reversal, reconstruct as a well-focused signal 
upon the nonlinear element. Furthermore, the generation and time-reversal of nonlinear excitations will 
not depend upon the location of the object, which may be unknown.  This allows creation of an exclusive 
communication channel with the nonlinear object, without knowledge of its location, and the ability to 
direct energy onto it without interfering with nearby objects.  

This method of nonlinear time-reversal has been demonstrated through time-reversal of acoustic waves 
[17] in materials with discrete nonlinear defects, and exploited as a means of non-destructive evaluation. 
[18]  Nonlinear time-reversal has also been shown to be feasible in ultrasound applications, using 
cavitation bubbles to generate harmonics and to guide the time-reversal. [19] Time-reversible propagation 
of acoustic waves in a distributed nonlinear medium is also possible [20]; however, time-reversal 
invariance is broken for long propagation lengths in which shock waves form. For localized 
nonlinearities, the generated waves propagate linearly, and remain time-reversible. Time-reversal using 
localized nonlinearities was also demonstrated in optical systems (using phase conjugation) by two 
methods. In one, a nanoparticle was used as a localized nonlinearity, generating second harmonic 
radiation which was phase- conjugated back onto the nanoparticle. [21] In the second, a focused 
ultrasonic signal was used as a synthetic 'guide star' (similar to atmospheric guide stars for optical 
correction in astronomical imaging) for the focusing of the time-reversed light to the chosen focal point. 
[22]  

We have realized a time-reversal mirror using electromagnetic waves at telecommunication frequencies in 
a closed complex (ray-chaotic) scattering environment, as shown in Fig. 1a.  The enclosure is a 1.06 m3 
aluminum box with irregular surfaces and a conducting scattering paddle, and has three ports for the 
introduction and extraction of microwave signals.  The ‘nonlinear port’ uses an antenna incorporating a 
diode (model number 1N4148) as part of a 5 mm by 15 mm rectangular metal loop. Two 'linear' antennas 
consisting of 5 mm by 15 mm rectangular metal loops are mounted at the other ports (the ‘linear port’ and 
‘transceiver port’). The diode is driven by a continuous wave (CW) tone generated (via an HP 83620B 
swept signal generator) at a frequency fdiode = 400 MHz and a power of +20 dBm; this signal is used to 
generate intermodulation products with signals incident upon the diode. An alternate realization was also 
constructed by replacing the nonlinear antenna/diode and the CW tone with a linear antenna connected to 
a frequency multiplier circuit.  The circuit consists of a Wilkinson divider (HP model 87304C), with both 
outputs connected to the ports of a x2 frequency multiplier (Mini-Circuits model ZX90-2-50-S+) to form 
a closed circulating nonlinear circuit which generates second harmonics of the incident signals, without a 
driving tone. Similar results are obtained with both realizations of the nonlinear port. 

 In the time-forward portion of the experiment, an initial driving signal, consisting of a Gaussian-shaped 
(in the time domain) pulse, is generated (via a Tektronix AWG7052 arbitrary waveform generator and an 
Agilent E8267D Vector PSG microwave source) at a carrier frequency fpulse = 3.8 GHz, with a duration of 
50 ns and a power of +25 dBm, and is transmitted into the system from the linear port. The excitation 
propagates throughout the system, including to the diode, where nonlinear excitations are generated as 
intermodulation products of the pulse frequency and the CW driving signal frequency. The combined 
signal reverberates through the scattering environment, and is received at the transceiver port and 
recorded using an oscilloscope (Agilent Infiniium DSO91304A Digital Storage Oscilloscope) over a 
period of 10 µs, either through a single-shot measurement, or through averaging of several (up to 100) 
waveforms. 

The recorded waveforms (referred to as 'sonas', an example shown in Fig.  1a and Fig. 1b) are 
complicated waveforms that are unique to the scattering environment and unique to the source, nonlinear 
element and detector locations.  An example Fourier transform of such a signal is shown in the inset of 
figure 1b.  The Fourier transform consists of signals at the carrier frequency, at harmonics of the 400 
MHz CW signal, and at the sum and difference frequencies of the two tones, arising from the nonlinear 



object within the enclosure. (These intermodulation tones are absent when the diode is removed from the 
antenna. The weak signal at the difference frequency is explained by poor coupling of the antennas at that 
frequency. ) This sona is band-pass filtered into a linear sona (through a filter with bandwidth of 100 
MHz centered at the pulse carrier frequency fpulse), and a nonlinear sona at the sum frequency (fpulse + fdiode 

.).  

In the time-reversed portion of the experiment, each sona is time-reversed and retransmitted from the 
transceiver port and the reconstructed signals measured at the linear port and at the nonlinear port. Figure 
2 shows example reconstructions measured using this setup. For the linear sona, a reconstructed pulse 
appears only at the linear port (Fig. 2a) and not at the nonlinear port (Fig. 2c); similarly, for the nonlinear 
sona, a reconstructed localized-in-time excitation appears only at the nonlinear port (Fig. 2d) and not at 
the linear port (Fig. 2b). This also demonstrates the exclusive nature of information transfer between the 
transceiver port and the linear / nonlinear port.  

The question arises about why the nonlinear reconstruction (Fig. 2d) is so well localized in time, in fact 
resembling the initial pulse. For an initial signal O transmitted into the system at port a, the sona σ at port 
b is expressed as σb = Hab O, where H is a transfer function between the two ports. The linear sona 
generated by excitation at the linear port (LP) at the transceiver port (TP) is expressed as σlinear = HLP,TP O. 
The nonlinear sona arises from the signal present at the nonlinear port (NP): σNP= HLP, NP O. The 
nonlinearity generates a new excitation N = D σNP, where D is the nonlinear effect on the signal 
(depending on the properties of the nonlinearity). The received nonlinear sona is then expressed as 
σnonlinear = HNP,TP N. For this realization of the time-reversal mirror, we expect the signal (σNP) incident 
upon the diode (and the resultant nonlinear sona σnonlinear) to be dominated by the largest amplitude 
excitations arising from the direct-path propagation of the initial pulse. This will result in a well-localized 
in time nonlinear reconstruction. Experiments have been performed to test this hypothesis, and indicate 
that the sona arriving at the nonlinear port consists of a large amplitude, well-localized initial excitation 
followed by low amplitude reverberations. When the configuration of the ports is altered to remove the 
direct path between the linear and nonlinear ports, the initial large-amplitude excitation (and much of the 
nonlinear sona) disappears. Experiments have also been performed to measure the localization in space of 
the reconstructions. Using reconstructions upon ports separated by approximately one-half of the pulse 
wavelength, an upper bound for the nonlinear reconstruction width of 0.96 λ (of the nonlinear carrier 
signal) is observed.  Measurement of the size of the received signal on an antenna swept through the 
reconstructed spatial profile provides a lower bound for the reconstruction width; a full-width half-
maximum of 0.77 λ is observed. These measurements show that the reconstruction is strongly localized in 
both space and time. 

To use the time-reversal of a nonlinear signal as a secure communication channel [5], it must not be 
possible to determine the content of transmitted messages at locations other than the nonlinear port. Using 
a naïve on-off modulation of the nonlinear sona, it will be possible to decode the signal at any point in the 
environment, as enhanced noise will be present for ‘on’ and not present for ‘off’.  The communication 
link can be made clandestine by encoding data as a series of constructed sonas representing ‘1’ and ‘0’ 
bits. The nonlinear sona received at the transceiver port is utilized to create a '1' bit at the nonlinear object 
in a pulse code modulation communication scheme.  To create a ‘0’ bit, this nonlinear sona is Fourier-
transformed into the frequency domain, and random Gaussian noise is added to the phase information of 
this signal.  This noisy-phase signal is inverse-Fourier transformed back to the time domain, resulting in a 
'0' sona that superficially looks like the nonlinear sona to an observer, but does not cause a reconstruction 
anywhere when it is time-reversed.  The inset of Fig. 3 shows examples of ‘1’ and ‘0 bit’ sonas joined 
together to form the word ‘1011’.  A series of these '1' and '0' time-reversed sonas are overlapped by 50% 
[23] (e.g. for a 10 µs sona, an overlap of 5 µs; see Fig. 3 inset) and transmitted at the transceiver port, and 
the presence or absence of reconstructed pulses are measured at the nonlinear port, and translated into the 
intended bit pattern. Reception of the nonlinear sona reverberations at other locations in the box will not 



give information about the bits transmitted to the nonlinear port (as demonstrated in Fig. 2 and Fig. 3).  
An equivalent process may be performed with the linear sona, to establish exclusive communication 
between the transceiver and linear ports. 

 

Figure 3 (a, b) shows images (1600 pixel, four-color) encoded in this manner that were transmitted in an 
exclusive manner to either the linear port (Fig. 3a) or the nonlinear port (Fig. 3b). The color palette for 
each image was mapped to four two-bit words (black – ‘00’, red – ‘01’, yellow – ’10’, white – ‘11’). For 
each word, an appropriate sona is constructed from concatenation of ‘1’ and ‘0’ sonas in reverse order (to 
undo the effect of time-reversal on the message), using the nonlinear sona to address the nonlinear port, 
and the linear sona to address the linear port.  Prior to image transmission, single linear and nonlinear 
sonas are transmitted and reconstructed on the respective ports, and recorded as an exemplar 
reconstruction. The location in time of the exemplar reconstruction is used as a ‘clock’ to determine a 
narrow time window in which the reconstructed pulses may appear.  The size of the reconstructed signal 
determines the detection threshold voltage for the image reconstructions. The constructed sona is 
transmitted and reconstructs on the appropriate port, and is measured on both linear and nonlinear ports. 
For each reconstruction time, if the waveform exceeds the threshold voltage a ‘1’ bit is recorded, 
otherwise, a ‘0’ bit is recorded. The resulting two-bit words are translated back to determine the next 
pixel color. In Fig. 3a, an image encoded using the linear sona is received with no error at the linear port. 
At the nonlinear port, the lack of any reconstruction is decoded as ‘00’, appearing as a black image. In 
Fig. 3b, the converse holds: a different image encoded using the nonlinear sona is decoded without error 
using reconstructions at the nonlinear port; no reconstructions are measured at the linear port.  Many 
extensions and improvements of this technique are possible, including the use of linear and nonlinear 
sonas at the same carrier frequency, greater overlap of the sonas, [23] and the use of more sophisticated 
reconstructed waveforms to convey more information. 

Our experimental results demonstrate time-reversal of electromagnetic signals arising from a discrete 
nonlinear element in a wave-chaotic enclosure.  Reconstructions of the linear- and nonlinear- time-
reversed signals have been demonstrated to be exclusive to linear- and nonlinear sources, enabling a 
method for secure communication with the nonlinearity. The ability to ‘find’ a nonlinear object and 
exclusively direct signals to it opens up new applications. Using the (possibly amplified) nonlinear sona, 
high-energy pulses can be reconstructed at a desired location (using a rectenna) forming a wireless power 
transmission system which avoids using a dangerous high-energy beam for power transmission. 
Alternatively, the reconstructed pulse could be used for precision hyperthermic treatment of tumors, by 
applying high-power pulses to nonlinear tags accumulated in the tumor with minimal disruption to other 
tissue in the scattering environment. Note that in both cases we do not require knowledge of or access to, 
the location of the nonlinear object, as would be required for linear time-reversal. In addition to the 
precision of the highly localized pulse (both spatially and temporally), different nonlinear objects may be 
distinguishable by the spectrum of their nonlinear response, enabling tailoring of nonlinear sonas to focus 
pulses on specific objects. Furthermore, the time-reversal mirror may be used as a sensor [11,12] to detect 
changes in both the scattering environment (through the linear and nonlinear reconstructions and sonas) 
and a nonlinear object (through changes appearing only in the nonlinear reconstruction and sona).   The 
union of time-reversal, wave-chaos, and nonlinear dynamics should continue to stimulate new basic 
research questions and applications. 
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FIG. 1.  (a) Schematic of the experimental setup. A Gaussian-shaped pulse (fpulse = 3.8 GHz, t = 50 ns) is 
transmitted into the ray-chaotic enclosure through the linear port, and reverberates through the scattering 
environment, interacting with the nonlinear element. (b) An example of a full Sona signal measured by 
the oscilloscope at the transceiver port, including the 3.8 GHz carrier tone and modulation envelope.  
(Lower Inset) shows a short segment (150 ns) of the sona in detail. (Upper Inset) Magnitude of the Fast 
Fourier Transform of the sona shown in (b) as a function of frequency.  The inset shows a close up 
around the center frequency of the pulse, indicating the frequency components arising from the pulse 
(fpulse) and the nonlinear element (fpulse + fdiode) 



 

 

FIG. 2. Reconstructions collected at the linear port and at the nonlinear port after broadcast of time-
reversed sonas from the transceiver port.  (a) shows the reconstruction of the linear sona at the linear port 
(only the positive part of the waveform is shown); inset shows the reconstructed pulse in detail.  (b) 
shows the (lack of) reconstruction of the nonlinear signal at the linear port, while (c) shows a similar (lack 
of) reconstruction of the linear sona at the nonlinear port. The inset of (c) shows the pulse initially 
incident on the linear port in the time-forward step. (d) shows the reconstruction of the nonlinear signal at 
the nonlinear port; inset shows the reconstructed pulse in detail.  



 

 

 

FIG. 3.  

(a) Transmission of a four-color (two bits per pixel) image using the time-reversed linear sona, which is 
reconstructed only at the linear port. The lack of reconstructed pulses at the nonlinear port corresponds to 
the transmission of ‘00’ which decodes as a black pixel. (inset) An example constructed sona, displaying 
the combination of ‘1’ and ‘0’ component sonas, to generate a reconstruction representing ‘1101’. (b) 
Transmission of a different four-color image using the time-reversed nonlinear sona, which is 
reconstructed only at the nonlinear port.   

 


