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One approach to quantum information processing is to use photons as quantum bits and rely
on linear optical elements for most operations. However, some optical nonlinearity is necessary to
enable universal quantum computing [1–4]. Here, we suggest a circuit-QED approach to nonlinear
optics quantum computing in the microwave regime, including a deterministic two-photon phase
gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a
superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlin-
earity, we find that our approach has improved tolerance to noise in the qubit while maintaining
fast operation.

PACS numbers: 03.67.Lx, 84.40.Dc, 85.25.Cp

Linear optics quantum computing (LOQC) has proven
to be one of the conceptually simplest approaches to
building novel quantum states and proving the possibility
of quantum information processing. It relies on the ro-
bustness of linear optical elements, but implicitly requires
an optical nonlinearity [1–4]. Unfortunately, progress to-
wards larger scale systems remains challenging due to the
limits to optical nonlinearities, such as the measurement
of single photons [5, 6].
In this letter we suggest recent advances in circuit-

QED in which optical and atomic-like systems in the
microwave domain are explored for their novel quantum
properties, provides a new paradigm for photon based
quantum computing (QC) [7–9], which, in contrast to
LOQC, is deterministic. Specifically, using supercon-
ducting nonlinearities in the form of Josephson junctions
in flux and phase qubits [10, 11], key elements of our
approach have been realized: the creation of microwave
photon Fock states [9, 12–14], controllable beam splitters
[9, 15], and single microwave photon detection [16, 17].
In many cases, photons stored in a transmission line
or inductor-capacitor resonator have much better coher-
ence times than the attached superconducting qubit (SQ)
[18, 21, 22]. This suggests that the main impediment to
photon based QC is the realization of appropriate photon
nonlinearities to enable two-qubit gates like two-photon
phase gates, which are sufficient for universal quantum
computation [1, 23].
The key element of a two-photon phase gate is a two-

photon nonlinear phase shifter. It imparts a π phase
on any state consisting of two photons, leaving single
photon and vacuum states unaffected. A deterministic
approach to such photon nonlinearity is based on the
Kerr effect [18, 19, 24, 25]. In the context of circuit-
QED, in Ref.[19], a four level N scheme using a coplanar
waveguide resonator and a Cooper pair box is used to
arrange for EIT [20] to generate large Kerr nonlineari-
ties. In this letter, we explore the possibility of using
a dc SQUID [26] to implement a nonlinear coupling be-
tween qubit and resonator, which, through an adiabatic
scheme, enables a high fidelity, deterministic two-photon
nonlinear phase shift in the microwave domain. Along
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FIG. 1: (a) Implementation of a high-impedance resonator
(blue) coupled to a dc SQUID (red) with an inductive outer
loop. (b) A simple circuit model of our physical implementa-
tion. (c) Bottom: Energy levels of the coupled system with a
sizeable two-photon coupling. Top: Suggested flux bias pulse
φx to implement the nonlinear phase shift; a fast but adiabatic
sweep and then a slow variation near the avoided crossing.
(d) Use of two nonlinear phase shifters, combined with 50/50
beamsplitters, leads to a deterministic two-photon phase gate
using dual-rail logic. The two photons in the dual-rail basis
|0〉
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|1〉

L
= |01〉

1
|10〉

2
of the qubits become bunched into a

single mode after passing through the first beam splitter, re-
ceiving a π phase from the nonlinear phase shifter. Storage
cavities (not shown in (b)) are blue lines.

with the nonlinearity, we envision using dynamically con-
trolled cavity coupling to implement a 50/50 beam split-
ter operation to construct a two-photon phase gate using
dual-rail photon qubits [9, 27], in which the logical basis
{|0〉L = |01〉 , |1〉L = |10〉} corresponds to the existence
of a single photon in one of two resonator modes (Fig-
ure 1d). Our approach takes advantage of relatively long
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coherence times for microwave photons in resonators, and
couples only virtually to SQ devices, minimizing noise
and loss due to errors in such devices. The combination of
the aforementioned techniques for Fock state generation
and detection and dynamically controlled beam splitters
provides the final element for nonlinear optics quantum
computing in the microwave domain.
We now consider photons stored in a high-impedance

microwave resonator [28] coupled inductively with
strength 0 < χ < 1 to a flux SQ in a dc SQUID configu-
ration (Figure 1a). The resonator loops around the squid
resulting in a nonlinear cosine dependent interaction with
the qubit. In this configuration, we get an effective cou-

pling of the form V ∼ EJ cos(φ̂ + φ′x) cos φ̂r, where an
external flux φ′x ≡ 2πχΦ′

x/Φ0 is applied to the resonator
which consequently threads the smaller loop of the squid,
Φ0 being the superconducting flux quantum. The qubit

phase variable and the resonator flux are denoted by φ̂

and φ̂r = 2πΦ̂r/Φ0 respectively. For φ′x ∼ π/2, we see
immediately a nonlinear coupling between the qubit and

resonator: V ∼ EJ φ̂φ̂
2
r, where two resonator photons can

be annihilated to produce one qubit excitation, analogous
to parametric up conversion in χ(2) systems. This results
in a coupling of two resonator photons with a single qubit
excitation with strength g2 (Figure 1c). In essence, in
this region, the two-photon state with detuning δ from
the qubit, becomes slightly qubit-like and acquires some
nonlinearity. However, the single-photon state, inspite
of its coupling to the first SQ excitation with strength
g1, remains mostly photon-like because it is far detuned
by ∆. At the end of the procedure, this leads to an ad-
ditional phase for the two-photon state. The coupling
of the two-photon state to other modes arises via linear
coupling at O(g1) and is assumed to be far detuned.
The noise in the SQ, with a decay rate γ of its first

excitation, may slightly limit our nonlinear phase accu-
mulation. Although the system is mostly in the photon-
like regime with decay rate κ, there will be an additional
probability for it to decay due to its coupling to the lossy
qubit. In the limit where |δ| ≫ |g2| and |∆| ≫ |g1| with
|∆| > |δ|, the two-photon nonlinearity goes like g22/δ,
and the two-photon state decays approximately at a rate
γg21/∆

2+γg22/δ
2. Thus, the losses due to the qubit go like

γ/δ provided we allow g1 to become close to g2, which is
possible by controlling φ′x. Hence, at large detuning, we
will then be limited only by κ. In contrast, a Kerr non-
linearity scales like g41/δ

3 and the noise scales like γg21/δ
2,

leading to more qubit-induced loss at large detuning.
We now examine a detailed model to support these

qualitative arguments. In our case, the second resonator
is not coupled to a SQ and is not shown; we focus on the
dynamics of the first resonator, which is coupled. The
quantum Hamiltonian of the system is [29]

H =

[

q̂2r
2Cr

+
q̂2

2CJ
− χ

2Cr
q̂q̂r

]

+

(

Φ0

2π

)2
φ̂2r
2Lr

(1)

−EJ [cos(φ̂+ χφ̂r + φ′x) + cos φ̂] +
EL

2
(φ̂+ φx)

2,

where the last three terms represent the potential energy.
In addition to φ′x, an external flux φx = 2πΦx/Φ0 is ap-
plied to the outer inductive loop of the squid. The canon-

ical coordinates of the qubit satisfy [φ̂, N̂ ] = i, where

N̂ = q̂(2e)−1 is the number of Cooper pairs in the junc-

tions. The operators Φ̂r and q̂r represent quantum fluc-
tuations in flux and charge of the resonator satisfying
[Φ̂r, q̂r] = i~, and χ is the fraction of the flux Φ̂r thread-
ing the squid loop. This inductive coupling causes the
effective capacitances of the resonator and qubit to be
modified to Cr and CJ respectively. EJ is the Josephson
energy of each junction, while EL = Φ2

0/(4π
2L1) repre-

sents the inductive energy of the qubit due to the bigger
loop. We define an effective charging energy of the junc-
tion to be EC = (2e)2C−1

J and introduce another dimen-

sionless parameter µ = 2πΦ−1
0 Φ0

r, where Φ0
r =

√

Lrω~/2
is the width of quantum fluctuations in the resonator flux.
In terms of the quantum of conductance G0 = 2e2/h
and the characteristic impedance of the resonator Z =
(Lr/Cr)

1/2, we can write µ =
√
2πG0Z. Since µ ≪ 1,

we can expand V in powers of χφ̂r ∝ µ. Performing the
expansion to second order, we get H = Hr + Hq + VI
with

Hr =
q̂2r
2Cr

+
Φ̂2

r

2Lr
(2)

Hq =
q̂2

2CJ
− 2EJ cos

[

φ′x
2

]

cos

[

φ̂+
φ′x
2

]

+
EL

2
(φ̂+ φx)

2

VI = χEJ [φ̂r sin(φ̂+ φ′x) +
χφ̂2r
2

cos(φ̂+ φ′x)]−
χq̂q̂r
2Cr

corresponding to the resonator, qubit, and interaction
terms. We remark that asymmetry in the Josephson
junctions leads to additional terms, but our general lin-
earization approach described below remains valid, and
provides qualitatively similar results.

In the regime EL ≫ EJ we can linearize the potential
term in (1) around the classical values of the resonator
reduced flux φcl and the qubit phase βcl = −φx + f ,
with quantum fluctuations ϕ̂r and ϕ̂ around them. Any
nonlinearity can then be treated perturbatively. We note
that φcl, f , r, s, t, and u are all known functions of
φx and φ′x which arise from linearization, and will not
be mentioned explicitly. With the effective inductance
of resonator L̃−1

r = L−1
r + (2π/Φ0)

2EJχ
2u and Φ̂r =

Φ0/(2π)ϕ̂r, the resonator and qubit Hamiltonians can
now be written as

Hr =
q̂2r
2Cr

+
Φ̂2
r

2L̃r

;Hq =
q̂2

2CJ
+
EL + EJ(t+ u)

2
ϕ̂2 (3)

with respective frequencies ω = (L̃rCr)
−1/2 and ωq =

√

ωC [ωL + ωJ(t+ u)]. We see immediately that chang-
ing the external fluxes changes these frequencies, and
hence, the qubit-resonator detuning ∆ = ωq − ω. Intro-
ducing creation and annihilation operators for the res-
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onator and qubit satisfying [â, â†] = 1 = [b̂, b̂†] with

ϕ̂ =

√

ωC

2ωq
(b̂+ b̂†); N̂ = −i

√

ωq

2ωC
(b̂− b̂†), (4)

Φ̂r =

√

L̃rω~

2
(â+ â†); q̂r = −i

√

~

2L̃rω
(â− â†).

the resonator and qubit Hamiltonians becomeHr = ωâ†â

and Hq = ωq b̂
†b̂. When the qubit is not linearized as

in (2), the potential energy terms can be written as

V1 = η1(â+ â
†) sin(φ̂+φ′x), V2 = η2(â+ â

†)2 cos(φ̂+φ′x),

V3 = iη3(â− â†)N̂ , with coupling coefficients η1 = χEJµ,
η2 = η21/(2EJ), and η3 = (η1~ω)/(2EJ). The potential
that is of relevance is V2 from which the nonlinear cou-
pling is seen to be g2 =

√
2η2 〈0q| cos(φ̂+ φ′x) |1q〉, where

the matrix element is between the ground and first ex-
cited qubit states. The nonlinear coupling coefficient η2
depends on the characteristic impedance Z of the LC cir-
cuit implicit in the parameter µ. Therefore, we have to
implement a high-impedance resonator to make g2 size-
able.
The linearized flux dependent Hamiltonian of the sys-

tem is

HL = Hr +Hq −
χ

2Cr
q̂q̂r + χEJu ϕ̂r ϕ̂. (5)

We neglect all higher order nonlinear terms and only con-
sider the perturbative χ(2) type nonlinearity given by
V2 = −EJχ

2s/2 ϕ̂ ϕ̂2
r. We can make a rotating wave

approximation and write HL in terms of creation and

annihilation operators HL = ωâ†â + ωq b̂
†b̂ + g1(âb̂

† +

â†b̂), where the linear coupling g1 = η1u
√

ωC/(2ωq) −
η3
√

ωq/(2ωC).

By introducing new operators ĉ and d̂ which pre-

serve the commutation relations [ĉ, ĉ†] = 1 = [d̂, d̂†],
the normal mode Hamiltonian can be shown to be
HN = Ω1ĉ

†ĉ + Ω2d̂
†d̂, with energies Ω1,2 = ω +

∆/2
(

1∓
√

1 + 4g21/∆
2
)

. We assume ∆ > 0. The bare

basis states of the system is denoted by |n〉⊗ |q〉 ≡ |n q〉,
where the first and second labels refer to the quantum
numbers of the resonator and qubit. The relevant eigen-
states of the Hamiltonian in the new basis are num-
ber excitations of ĉ†ĉ and d̂†d̂. Denoting these kets
as

∣

∣C̄D̄
〉

, we can write down three important eigen-
states with energies Ω1, Ω2, and 2Ω1. They are |1̄0̄〉 =
cos θ |10〉 + sin θ |01〉, |0̄1̄〉 = − sin θ |10〉 + cos θ |01〉, and
|2̄0̄〉 = cos2 θ |20〉 +

√
2 cos θ sin θ |11〉 + sin2 θ |02〉. The

parameter θ satisfies tan 2θ = −2g1∆
−1. For ∆ ≫ |g1|,

|1̄0̄〉 → |10〉, |0̄1̄〉 → |01〉, |2̄0̄〉 → |20〉, Ω1 → ω, and
Ω2 → ωq.
The nonlinear coupling V2 couples the states |2̄0̄〉

and |0̄1̄〉 leading to a sizeable avoided crossing in Fig-
ure 1c between the two-photon and qubit. Working in
the truncated subspace spanned by the states {|0〉 ≡
|0̄0̄〉 , |a〉 ≡ |1̄0̄〉 , |b〉 ≡ |2̄0̄〉 , |c〉 ≡ |0̄1̄〉}, we write the
relevant Hamiltonian as H = H0 + V where H0 =

Ω1 |a〉 〈a| + 2Ω1 |b〉 〈b| + Ω2 |c〉 〈c| and the coupling V =
λ1(|a〉 〈b|+ |b〉 〈a|) + λ2(|b〉 〈c|+ |c〉 〈b|). The parameters

λ1 =
√
2η′2 cos

2 θ sin θ ≡ r1η
′
2 and λ2 = −

√
2η′2 cos

3 θ ≡
r2η

′
2 with η′2 = η2s/

√
2. We can adiabatically eliminate

the state |a〉 to find an effective Hamiltonian He = (Ω1−
r21η

′2
2 /Ω1) |a〉 〈a| + (2Ω1 + r21η

′2
2 /Ω1) |b〉 〈b| + Ω2 |c〉 〈c| +

r2η
′
2(|b〉 〈c|+ |c〉 〈b|).
We can use this Hamiltonian to calculate the two-

photon nonlinearity Nl. For |δ′| ≡ |Ω2 − 2Ω1| ≫ |η′2r2|,
we have Nl = −(η′2r2)

2/δ′ ≡ −g22/δ′ ≈ −g22/δ, where
we have associated the nonlinear coupling g2 with η′2r2.
The nonlinear phase-shift protocol requires initializing
the system in the states |10〉 ≈ |1̄0̄〉 and |20〉 ≈ |2̄0̄〉
with errors that go like g21/∆

2. Then the external fluxes
are varied adiabatically so that the state |2̄0̄〉 becomes
slightly qubit-like, mostly because of |11〉. After accu-
mulating the desired phase, the process is reversed to re-
trieve the photons. For some integer n, we require for a
total time τg,

∫ τg
0
Nl(t)dt = (2n+1)π. The final outcome

is then 1√
3
(|00〉+ |10〉+ |20〉) → 1√

3
(|00〉+ |10〉 − |20〉).

In addition to our analytical model, we also diagonal-
ize the Hamiltonian numerically in the tensor product
space H = Hr ⊗Hq of the resonator and qubit using the
Hamiltonian (2). The basis states in the resonator space
are number excitations |n〉. The qubit space is written in
the basis of qubit wavefunctions ψq(φ) = 〈φ| q〉. We let
~ = 1 and choose ωC/(2π) = 1 GHz, ωJ/(2π) = 5 GHz,
ωL = 3ωJ , and ω/(2π) = 2.225 GHz. The impedance
Z ≈ 449 Ω. We choose a χ = 0.17, representing an
easily achievable mutual inductance, from which follow
η1/(2π) = 400 MHz, η2/(2π) = 16 MHz, and η3/(2π) =
89 MHz.
We now discuss the effect of loss on our gate.

Since throughout the gate operation the system remains
photon-like, loss is dominated by the cavity with a de-
cay rate κ. For the photon-like state |2̄0̄〉, there are two
other decay channels due to the cavity-qubit coupling.
The linear coupling g1 in the limit ∆ ≫ |g1| leads to
γ1 ≡ γg21/∆

2 = γg21/(δ + ω)2. Similarly the nonlinear
coupling leads to γ2 ≡ γg22/δ

2 for |δ| ≫ |g2|. Thus,
the total decay rate of the two-photon-like state becomes
Γ(δ) = κ+ γ1 + γ2.
Assuming g2 is time independent, adiabaticity requires

g22 |δ̇|2(δ2+4g22)
−3 ≪ 1 . Setting this equal to some ǫ2 ≪

1, we solve for τh(δm) = ǫ−1
∫ δi
δm

|g2|/(δ2+4g22)
3

2 dδ, which

is the time taken to go from |δi| ≫ |g2| at t = 0 to
smaller values of detuning with a minimum δm. The total
dynamic loss during the process is given by Ld(δm) =

2ǫ−1
∫ δi
δm

Γ(δ)|g2|/(δ2 + 4g22)
3

2 dδ. When the detuning is

held at δm for a time τs = πδm/g
2
2 , the static loss is

Ls = τsΓ(δm). More explicitly,

Ls(δm) = π

[

κδm
g22

+
γδm

(δm + ω)2

(

g1
g2

)2

+
γ

δm

]

, (6)

and the total time of the protocol is τg = 2τh+τs. Assum-

ing δm ≪ ω, Ls(δm) is minimized when δm ≈ g2
√

γ/κ.
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FIG. 2: (a) Schematic of the system bare energy levels and
couplings. (b) Contour plots of detuning δ and |g2| with the
on and off points marked in green and red. The on point
is chosen such that the g2 is maximized. (c) Top: The cou-
pling g1/10 and g2. Bottom: The analytical (dashed) and
numerical (solid) results of the bare frequencies 2ω/(2π) and
ωq/(2π). The overall qubit-resonator interaction leads to a
roughly 10 MHz splitting.

However, the on-off ratio of the photon nonlinearity goes
like |δi/δm|, and a value of δm that makes this ratio at
least a hundred is desirable. For δ ∼ ω, we can make
g1 ≈ g2 so that Ls(δ) < κδ/g22+2γ/δ. In this regime Ls is
limited by κ, as can be verified from Figure 3b. Thus, we
optimize our protocol so that the loss L = Ld + Ls ≪ 1.
We note that our protection is only against qubit noise
and loss, and comes at the cost of increased reliance on
the cavity quality factor.
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FIG. 3: (a) A plot of the dimensionless dynamic loss Ld

for κ = 1 KHz, γ = 100κ and ǫ2 = 0.01. The detuning
−536 MHz ≤ δm ≤ −41 MHz. (b) The static loss Ls in pur-
ple, and the static loss without the effect of the cavity decay
rate κ in green.

The protocol might also be limited by dephasing of the
qubit due to flux noise [30–32]. The average slopes of the
single and two-photon energy levels with respect to the
reduced flux φx are approximately 50 MHz and 100 MHz
respectively, while the slope of the qubit energy level is
at most 1 GHz for the parameters chosen. However, the
exact loss due to dephasing depends on the flux noise
amplitude [33, 34].

In conclusion, we have demonstrated that by appro-
priately tuning the two control fluxes, the nonlinear cou-
pling enables a two-photon nonlinear phase shift oper-
ation with loss at large detuning limited only by the
cavity quality factor. This is highly desirable compared
to the self-Kerr nonlinearity which leads to more qubit-
induced loss at large detunings. Furthermore, our ap-
proach may be adaptable to recent ultra-high quality fac-
tor resonators enabling nonlinear optics quantum com-
puting in a fully engineered system [22].
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