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We report on the implementation of a quantum process tomography (QPT) technique known as
direct characterization of quantum dynamics (DCQD) applied on coherent and incoherent single-
qubit processes in a system of trapped 40Ca+ ions. Using quantum correlations with an ancilla
qubit, DCQD reduces substantially the number of experimental configurations required for a full
QPT and all diagonal elements of the process matrix can be estimated with a single setting. With
this technique, the system’s relaxation times T1 and T2 were measured with a single experimental
configuration. We further show the first, complete characterization of single-qubit processes using a
single generalized measurement realized through multi-body correlations with three ancilla qubits.

PACS numbers: 03.67.Ac; 03.65.Wj

Characterization of quantum dynamics is an important
primitive in quantum physics, chemistry, and quantum
information science for determining unknown environ-
mental interactions, estimating Hamiltonian parameters,
and verifying the performance of engineered quantum
devices. This has led to a major effort in developing
tools for the full characterization of quantum processes,
known as quantum process tomography (QPT). The
standard approach for QPT is resource intensive, re-
quiring 12N experimental configurations for a system of
N qubits [1, 2], where each experimental configuration
consists of the preparation of input probe states and the
measurement of process outputs [3]. Using ancilla qubits
but only joint separable measurements, the number of
experimental configurations is still 12N [4–6]. However,
the use of many-body interactions to ancilla qubits in
the preparation and/or measurements can significantly
decrease this number to anywhere from 4N to a single
configuration depending on the nature and complexity
of quantum correlations [6]. Using two-body correlations
DCQD requires up to 4N experimental configurations
for full quantum process tomography, and in particular
only one experimental setting for estimating certain
parameters (e.g. relaxation times) [7, 8]. Experimental
efforts in this direction include a partial and non-scalable
implementation of DCQD [9, 10], an ancilla-assisted
process tomography [4, 5] and a joint effort efficiently
implementing DCQD in a photonic system [11].

Alternatively, efficient gate-fidelity estimation meth-
ods such as randomized benchmarking [12], or tomo-
graphic methods such as selective and efficient QPT [13,
14] and compressed sensing for quantum process tomog-
raphy [15–17] have recently been developed to overcome
the exponential increase of the required experimental
configurations. Generally, these methods are tailored to
estimate a polynomial number of effective parameters,

such as gate fidelity [12] or when we can make a sparse
quantum process/Hamiltonian assumption from a priori
knowledge about the quantum system [17]. For exam-
ple, the estimation of the dynamical parameters T1 and
T2 (longitudinal and transverse relaxation times [1]) is a
task involving two non-commuting observables (e.g. σx

and σz) that cannot be measured simultaneously. These
parameters describe the influence of noise on atomic-,
molecular- and spin-based systems induced by the inter-
action with the environment. An alternative approach
based on DCQD, henceforth called Direct Characteriza-
tion of Relaxation Times (DCRT), enables the measure-
ment of both T1 and T2 simultaneously with a single
experimental configuration [18].
In this work, we apply the DCQD technique and

extensions on a system of trapped 40Ca+ ions. Single-
qubit processes are reconstructed with four experimental
configurations using DCQD, and alternatively with just
a single configuration using a generalized measurement
(GM). In addition, we quantify the relaxation times
T1 and T2 in our system with a single configuration.
This technique can also characterize more realistic
environments affecting not only the probe but also the
ancilla qubit collectively.

In the following, we consider quantum processes which
can be described by a completely positive, convex-linear
and trace-preserving map E mapping the input state ρ
onto the output state ρ′. For a single qubit this can be
written as

E : ρ → ρ′ =

4
∑

m,n=1

χm,n σm ρ σ†
n, (1)

with σm, σn the Pauli operators {1, σx, σy, σz} and χ
a semi-positive matrix containing complete information
about the process. In standard quantum process tomog-
raphy (SQPT) the process is applied to four input states
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FIG. 1. (color online) Procedure to characterize a single-qubit
process with DCQD and a GM. In DCQD (a) each exper-
imental configuration consists of the preparation of one of
four input states ρj entangled between the system ion S and
the ancilla ion A. The process E is applied on S followed by a
BSM on the output state E(ρj), which consists of a single MS
operation followed by a projection onto the computational ba-
sis. (b) Generalized measurement via many body interactions
(see text).

and followed by full state tomography of each output
state, which for a trace preserving map consists of three
measurements, resulting in 4× 3 = 12 experimental con-
figurations. In DCQD these four input states are replaced
by four entangled states between the system qubit S and
an ancilla qubit A, and the state tomography is replaced
by a single Bell-state measurement (BSM), as shown in
Fig. 1(a), with a total of 4 × 1 = 4 experimental con-
figurations (Bell states |Ψ±〉 and |Φ±〉 as defined in Ta-
ble I). The probabilities pi,j of measuring the Bell-state
projector Pi for each input state ρj shown in Table I are
determined, according to Refs. [7, 19], by

pi,j = Tr(Pi E(ρj)) =
4

∑

m,n=1

χm,n Λi,j
m,n (2)

Λi,j
m,n= Tr(Pi(σm ⊗ 1)ρj(σn ⊗ 1)†).

Therefore the process matrix χ can be calculated directly
by linear inversion of the matrix Λ. The set of input
states ρj and the Bell-state projectors Pi have to be de-
termined such that the 16 equations in Eq. (2) are linearly
independent, which ensures that Λ is invertible (Table I).
Our experiments were realized on a system consist-

ing of 40Ca+ ions confined to a string in a linear Paul
trap [20]. Each ion represents a logical qubit which is en-
coded in the electronic levels D5/2(m = −1/2) = |0〉 and
S1/2(m = −1/2) = |1〉. Each experimental cycle consists
of an initialization of the ions in their internal electronic
and motional ground states followed by a coherent ma-
nipulation of the qubits and finally a detection of the
quantum state. State initialization is realized by optical
pumping into the S1/2(m = −1/2) state after cooling the
axial centre-of-mass mode to the motional ground state.

Input states ρj = |ψj〉〈ψj | Bell-state basis
|ψ1〉 = |00〉+ |11〉 |Φ+〉 = |00〉+ |11〉
|ψ2〉 = α|00〉+ β|11〉 |Ψ+〉 = |01〉+ i|10〉
|ψ3〉 = α|++〉x − β| − −〉x |Ψ−〉 = |01〉 − i|10〉
|ψ4〉 = α|++〉y − β| − −〉y |Φ−〉 = |00〉 − |11〉

TABLE I. Input states and BSM basis used for the imple-

mentation of DCQD (|±〉x = |0〉±|1〉√
2

, |±〉y = |0〉±i|1〉√
2

). The

determinant of Λ in Eq. (2) is maximized for α = cos( 3π
8

and β = exp(iπ
2
) sin( 3π

8
)) to ensure the invertibility [19].

The BSM is realized by a measurement with the projectors
Pi = {|Φ±〉〈Φ±|, |Ψ±〉〈Ψ±|}.

The manipulation of the qubits is implemented by co-
herently exciting the S1/2 ↔ D5/2 quadrupole transition
with laser pulses. Finally, the population of the qubit
states is measured by exciting the S1/2 ↔ P1/2 transi-
tion and detecting the fluorescence light, using electron
shelving [21]. Our setup is capable of realizing collec-

tive qubit rotations U(θ, φ) = exp(−i θ2
∑

i[sin(φ)σ
(i)
y +

cos(φ)σ
(i)
x ]) via a laser beam addressing the entire register

as well as Mølmer-Sørenson entangling gates MS(θ, φ) =

exp(−i θ4 [
∑

i sin(φ)σ
(i)
y + cos(φ)σ

(i)
x ]2) [22, 23]. Addition-

ally we are able to perform single-qubit rotations on the

i -th ion of the form U
(i)
Z (θ) = exp(−i θ2σ

(i)
z ) by an off-

resonant laser beam, which addresses individual ions.
The input states for DCQD of Table I are prepared by
applying collective entangling operations and qubit ro-
tations as shown in Fig. 1(a). For example, the input
state ρ2 is created by the non-maximally entangling op-
eration MS(π4 , π). Our two-qubit entangling operation
generates Bell states with a fidelity of ≈ 99% in 120 µs.

The BSM is experimentally realized by a maxi-
mally entangling operation MS(π2 ,

π
4 ), which maps

from the Bell-state basis to the computational ba-
sis {|00〉, |01〉, |10〉, |11〉}, followed by individual-ion-
resolving fluorescence detection with a CCD camera.
As an example of the reconstruction method, consider

the first input state ρ1 = |Φ+〉〈Φ+|. If the process E
is the identity 1, the expectation value of the BSM-
projector P1 is 1 which is equivalent to detecting both
ions in the state |11〉 after the BSM. If a bit flip occurs
on the system ion, the output state is then mapped onto
the state |01〉 by the BSM (〈P2〉 = 1). The considera-
tions are similar for a phase-flip, or bit- and phase-flip
processes. Therefore, the diagonal elements χm,m of the
superoperator χ corresponding to 1, σx, σy, and σz are
detected by a single input state in combination with one
BSM.

We demonstrate the DCQD method by characterizing
the full quantum process of implemented unitary rota-
tions σx and σy as well as non-unitary processes such
as amplitude- and phase-damping [24]. The χ matri-
ces reconstructed from the measured probabilities, are
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shown in Fig. 2(a,b) for σx and σy rotations. A single-
qubit process can also be visualized by transforming the
pure states lying on a Bloch sphere. In this Bloch sphere
representation, decohering processes map the unit Bloch
sphere (shown as a transparent mesh) to an ellipsoid of
smaller volume [1]. Implemented amplitude- and phase-
damping processes taking place with a 60% probability
are shown in this representation in Fig. 2(d,f) [24]. For
each input state the experiment was repeated up to 250
times for statistical averaging. All processes were recon-
structed with a maximum likelihood algorithm to ensure
trace preservation and positivity of the superoperator
χ [25]. The fidelity F of a process describes the overlap
between the measured χmeas and the ideal superoperator
χid. For each process we calculate the overlap between
χmeas and χid using the entanglement fidelity extended
to be applicable also for non-unitary processes [25–27].
Table II shows the calculated fidelities for the imple-
mented DCQD and for SQPT. The uncertainty in the
fidelity was estimated by parametric bootstrapping based
on projection noise in our measurement [28].

Target process DCQD, F (%) SQPT, F (%)
1 97.5± 0.6 98.1± 1.3
σx 96.5± 1.0 98.1± 1.3
σy 96.6± 1.4 97.5± 1.4

amplitude damping 95.3± 1.9 95.2± 2.7
phase damping 97.4± 0.8 95.7± 0.8

TABLE II. Calculated process fidelities F between imple-
mented and target processes as characterized with DCQD and
SQPT. All processes were measured with a total of 1000 ex-
perimental cycles, which correspond to 1000/4 cycles per ex-
perimental configuration for DCQD and 1000/(4×3)∼84 for
SQPT. The SQPT of the phase damping process was mea-
sured with a total of 3000 experimental cycles.

Full QPT of a single-qubit process is also possible with
a single experimental configuration by using additional
ancillas and a generalized measurement (GM). Here, we
expand the dimension of the Hilbert space HA⊗HS , with
the system Hilbert spaceHS and the ancilla Hilbert space
HA, such that the dimension of the total Hilbert space is
equal to the number of free parameters in the process ma-
trix χ [6]. For a single-qubit process one has to determine
all 16 superoperator elements χm,n which leads to an 8 di-
mensional ancilla Hilbert space. Therefore we used three
ancilla qubits A1, A2 and A3 to quantify a full process E
acting on the system qubit S. This GM is realized by en-
tangling the system and ancilla qubits using many-body
interactions [22, 23], then applying the process E on S
and finally performing BSMs on two pairs. Figure 1(b)
shows the sequence implemented for this GM which pro-
ceeds as follows. First, we create an entangled input state
using maximally and non-maximally entangling Mølmer -
Sørenson interactions in combination with global and ad-
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FIG. 2. (color online) Experimental results of DCQD for uni-
tary and decoherence processes. (a-b) Results of the mea-
sured superoperator χ for the rotation operations U(π, 0) in
(a) and U(π, π/2) in (b). Ideally, the target processes have
only nonzero elements at positions indicated by the orange-
bordered bars. (c-d) Bloch sphere representation of the ideal
(c) and measured (d) amplitude damping process with 60%
probability [22]. (e-f) Bloch sphere representation of the ideal
(e) and measured (f) phase damping process with 60% proba-
bility [22]. Bloch sphere axes in black evolve into the spheroid
primed axes in blue. A slight imperfection due to residual
light on the ancilla ion can be observed as a rotation of the
spheroids in the measured decohering processes.

dressed single-qubit rotations. After applying the process
E on S we perform a pairwise BSM on the combined out-
put state by implementing two non-maximally entangling
operations MS(π4 ) and two addressed AC-Stark pulses

U
(1)
Z (π) and U

(3)
Z (π), which separate the entangled sys-

tem H(S,A1, A2, A3) into a product state of two subsys-
tems H(A1, A3)⊗H(S,A2). These operations are equiv-
alent to two pairwise maximally entangling gates MS(π2 )
acting on the two subsystems H(A1, A3) and H(S,A2).
The 16 results of the measurement are directly linked to
the 16 superoperator elements χm,n by a matrix Λ sim-
ilar to Eq. (2). Using this technique we reconstructed
unitary processes {1, σx = U(π, 0), σy = U(π, π

2 ), σz =

U
(1)
z (π)} acting on a single qubit with a fidelity of

{99.70± 0.02, 97.30± 0.29, 99.80± 0.01, 99.40± 0.02}%.
All processes were measured with a total of 5000 cycles.

In contrast to previous QPT measurements of engi-
neered processes, the process of phase (amplitude) damp-
ing occurs naturally in our system due to magnetic field
fluctuations (spontaneous decay) [29]. The dynamical
parameters T1 and T2 can, however, be determined si-
multaneously with only the first input state ρ1 being sub-
ject to the DCQD scheme even if the damping processes
act collectively on both qubits (as in our experimental
system [29]). This method, named DCRT above, consists
of preparing an input Bell state ρ1 = |Φ+〉〈Φ+|, exposing
both qubits to the damping processes for a time t and a
final BSM, which yields the diagonal elements χi,i of the
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process matrix. As described in the supplementary ma-
terial [24] and assuming Markovian noise the dynamical
parameters are then given by

e−
N

2
t

T2 = χ1,1 − χ4,4 (3)

= Tr
{[

|Φ+〉〈Φ+| − |Φ−〉〈Φ−|
]

E
(

|Φ+〉〈Φ+|
)}

,

1 + 2e−
2t

T1 − 2e−
t

T1 = 1 − 2(χ2,2 + χ3,3), (4)

with N the number of ions. From the entries of the χ
matrix corresponding to 1 and σz (σx and σy) opera-
tions, T2 (T1) depends on the probability that no error
or phase flips (bit flips) occur on the entire system. A
fit of DCRT measurements χi,i to Eqns. (3-4) at different
times t thus yields T1 and T2 using a single experimental
configuration. We explored this DCRT technique in our
experimental system. The measurement results of the de-
coherence estimation are shown in Fig. 3(a). The green
dots show the difference between the diagonal elements
χ1,1 and χ4,4 as a function of the waiting time t. The
spontaneous decay of the system is shown in Fig. 3(b)
by plotting 1 − 2(χ2,2 + χ3,3) as a function of time. For
every waiting time t the experiment was repeated up to
250 times to gain significant statistics.
We can compare the DCRT technique with two

traditional methods that use product input states:
Ramsey-contrast measurements for phase-decoherence
estimation and direct spontaneous-decay measure-
ments [30]. A Ramsey-contrast measurement is realized
by initializing the ion in the state (|0〉 + |1〉)/

√
2 by

a global rotation U(π2 , 0), followed by a waiting time
t and finally applying a second rotation U(π2 , φ) in
which the phase φ is varied. The observed contrast
as a function of φ corresponds to the preserved phase
coherence. Spontaneous-decay measurements, instead,
consist of measuring the probability of detecting both
ions in the excited state |0〉 as a function of time. The
results of these Ramsey-contrast (spontaneous-decay)
measurements are shown in Fig. 3(a) (Fig. 3(b)) as red
diamonds (blue triangles). The measured relaxation
times corresponding to the traditional methods are
called Ttrad

1 and Ttrad
2 . The exponential fit (green

line) of Eq. (3) to the data was estimated with N = 2
(collective dephasing) and yields TDCRT

2 =18.8(5) ms.
The Ramsey-contrast measurements (red diamonds)
were carried out on a single ion and yield a coherence
time of Ttrad

2 =19.4(8) ms. The green dotted line in
Fig. 3(a) corresponds to the fitted function to Eq. (3)
(green line) with N = 1 instead of N = 2 and shows
good agreement with the single-ion Ramsey-contrast
measurement. Therefore the DCRT technique enables
the characterization of the phase decoherence of the
collective system (green line) and also gives a conclusion
about the phase decoherence of a single ion (green

dotted line). An exponential fit of the decay data of
Fig. 3(b) to Eq. (4) gives the characteristic lifetime
TDCRT

1 = 1130(47) ms for the DCRT technique (green
line) and Ttrad

1 = 1160(30) ms for the traditional method
(blue dotted line), which are in good agreement with
previously measured values [31] of 1148(18) ms.

In summary, we have experimentally demonstrated two
different approaches for the full characterization of single-
qubit quantum processes, lowering the required experi-
mental configurations from 12 to 4 using DCQD and a
single configuration via the GM method. The reconstruc-
tion of coherent and incoherent processes was shown with
fidelities of ≥ 97% using DCQD. In particular, we have
observed a lower statistical uncertainty of the fidelity of
some of the processes compared to the SQPT. Never-
theless, a matter of further investigations is a compari-
son of the scaling in the number of experimental cycles
required for the SQPT and DCQD to achieve a target
uncertainty in the fidelity (e.g. see identity process in
Table II). Experimentally, a reduced number of experi-
mental configurations implies a substantial reduction of
measurement time for a full QPT using DCQD as com-
pared with SQPT (e.g., from 35 days to 1 day, see [24]).
In addition, the DCRT technique, based on the DCQD
protocol, was used as a powerful tool to characterize the
noise in our system by measuring the relaxation times
T1 and T2 simultaneously with one experimental set-
ting. This technique indicates good agreement with tra-
ditional methods as Ramsey-contrast and spontaneous
decay measurement. In principle, there is an improve-
ment of a factor of two in the measurement time if T1 is
of the same order of magnitude as T2, which is not the
case for our setup. In contrast, spin-based solid state sys-
tems are collectively affected by noise and T1≈T2, which
would lead to a significant improvement of the measure-
ment time [32]. Another application of DCRT could be
for biological systems where dissipative dynamics play a
crucial role [33, 34]. The same measurement procedure
can also be used as a tool to quantify Hamiltonian pa-
rameters efficiently, which can not be realized with other
currently known techniques besides full QPT [8, 18]. Fur-
thermore, DCQD offers the capability to reveal the non-
Markovian properties of system-bath interactions [8, 35].
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FIG. 3. (color online) Simultaneous measurement of phase decoherence (a) and the spontaneous decay (b) of a two-qubit
system. The DCRT technique (green dots) is compared to a Ramsey-contrast measurement (red diamonds) and a spontaneous-
decay measurement (blue triangles) (see text). The measurement using the DCRT method in (a) was carried out on the
entangled two-qubit system (exp(− 4t

TDCRT
2

) scaling) whereas the red diamonds were measured on a single qubit with the Ramsey-

contrast technique (exp(− t

T trad
2

) scaling). The shaded areas correspond to the envelope of the curves with the decay times

TDCRT,trad
1,2 ±∆TDCRT,trad

1,2 , considering the statistical errors ∆TDCRT,trad
1,2 . The relaxation time measurements, using the DCRT

method and, in comparison, the traditional Ramsey-contrast and spontaneous decay measurement, yield: TDCRT
2 =18.8(5) ms,

Ttrad
2 =19.4(8) ms, TDCRT

1 = 1130(47) ms and Ttrad
1 = 1160(30) ms.
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