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Although jammed granular systems are athermal, several thermodynamic-like descriptions have
been proposed which make quantitative predictions about the distribution of volume and stress
within a system and provide a corresponding temperature-like variable. We perform experiments
with an apparatus designed to generate a large number of independent, jammed, two-dimensional
configurations. Each configuration consists of a single layer of photoelastic disks supported by a
gentle layer of air. New configurations are generated by cyclically dilating, mixing, and then re-
compacting the system through a series of boundary displacements. Within each configuration, a
bath of particles surrounds a smaller subsystem of particles with a different inter-particle friction
coefficient than the bath. The use of photoelastic particles permits us to find all particle positions as
well as the vector forces at each inter-particle contact. By comparing the temperature-like quantities
in both systems, we find compactivity (conjugate to the volume) does not equilibrate between the
systems, while the angoricity (conjugate to the stress) does. Both independent components of the
angoricity are linearly dependent on the hydrostatic pressure, in agreement with predictions of the
stress ensemble.

PACS numbers: 45.70.-n, 64.30.-t, 83.80.-Fg

Granular materials are a collection of discrete, ather-
mal particles. In the absence of an external driving force,
these materials relax into a mechanically stable jammed
state and cannot move into another configuration since
thermal fluctuations are negligible [1]. While these ma-
terials are therefore inherently non-equilibrium, prepar-
ing a configuration with a strict protocol nonetheless
yields different microscopic states with the same, repro-
ducible volume [2]. Edwards proposed that the system
volume (a conserved quantity) could be used to write
a granular density of states, a corresponding entropy,
and a temperature-like variable conjugate to the vol-
ume [3]. However, a complete granular statistical me-
chanics should describe the distribution of contact forces
as well as the volumes. Subsequent theoretical advances
have proposed that a stress-based ensemble [4–11] is
likely required for a full treatment.

In the Edwards ensemble, the volume V plays a role
analogous to that of energy in equilibrium statistical me-
chanics. A granular temperature, dubbed the compactiv-
ity, is defined as X ≡ (∂S/∂V )−1, and has been success-
fully measured in models [12, 13], simulations [14, 15],
and experiments [16–20, 22]. Similarly, the stress ensem-
ble considers force and torque constraints on individual
particles, and writes the density of states as a function
of the stress-tensor Σ̂ =

∑
~rij ~fij , where the ~rij are the

vectors pointing from the center of each particle to its
contacts, and ~fij is the corresponding contact force. The
conjugate variable is then a tensorial temperature known
as the angoricity, and is defined to be Â = (∂S/∂Σ̂)−1.

A minimal test of such temperature-like variables,
which are not guaranteed to be well-defined in an in-
herently nonequilibrium system , is to consider whether
they obey the zeroth law of thermodynamics. In exper-
iments and simulations, the compactivity [20] has pre-
viously been shown to be equal in different parts of the

same packing, and in different packings generated with
the same particles under identical conditions. Simula-
tions show this is also satisfied by the angoricity [7, 8].
However, no test has been made of whether two dissimilar
systems can equilibrate either X or Â. We provide such
a test in a real granular system subject to isotropic com-
pression, and find that while the compactivity fails this
simple test, the angoricity equilibrates in a temperature-
like way.

Our experiments are conducted on a bi-disperse gran-
ular monolayer of photoelastic disks resting on a nearly
frictionless surface provided by a thin layer of pressurized
air. The assembly of particles is comprised of an inner
subsystem and a larger bath which differ only in the inter-
particle friction coefficient (see Fig. 1). Starting from a
dilute state, the monolayer is bi-axially compressed by
outer walls in a series of short steps. At some global
volume fraction Φ, the system jams and for all further
steps the pressure on the system increases. Finally, the
walls re-dilate to permit large scale rearrangements be-
fore the next series begins. By repeating this protocol
many times, we generate an ensemble of configurations
for which we record particle positions to find local vol-
umes and use photoelastic analysis to calculate contact
forces using methods similar to [23, 24]. With this infor-
mation, we calculate the compactivity and angoricity for
both the bath and the inner subsystem.

In the Edwards ensemble [3], assuming equiprobability
and the entropy maximization principle, the probability
of finding a system with volume V and compactivity X
to be given by a Boltzmann-like distribution

P(V ) =
Ω(V )

Z(X)
e−V/X (1)

where the density of states is Ω(V ) is defined for an en-
semble of jammed configurations, and the partition func-
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tion is Z(X). As originally proposed by Edwards,
the volume V referred to the global volume of the sys-
tem, which exchanged volume with its surroundings. Re-
cently, attention has focused on the local (particle-scale,
Voronöı) volumes, which exchange volume with other
parts of the same system [20, 21]; this local ensemble
will be the focus of our investigations. The stress ensem-
ble, using conservation of the local force-moment tensor
Σ̂, similarly proposes a local Boltzmann-like distribution

P(Σ̂) =
Ω(Σ̂)

Z(Â)
e−Tr (Σ̂/Â) (2)

where the angoricity Â is a tensor. The temperature-like
variables X and Â describe the size of the fluctuations of
V and Σ̂, respectively.

To calculate either X or Â, we use two methods: the
method of overlapping histograms [7, 20, 25] and the
fluctuation-dissipation theorem (FDT) [16, 17, 22]. The
ratio of P(V ) between two systems is exponential in V
and is given by

P1(V )

P2(V )
=
Z(X2)

Z(X1)
e

(
1

X2
− 1

X1

)
V
. (3)

By taking the logarithm of this ratio, one obtains a term
linear in V , where the coefficient is the difference in
the inverse temperatures. The success of using this
approach supports the assumptions of the Edwards en-
semble and the Boltzmann-like distribution of V [20].
This method determines 1/X up to an additive constant:
1/X → 1/X+CX . The FDT method also provides a rel-
ative measurement. Using the measured variance 〈δV 2〉
of P(V ), we compute

1

X1
− 1

X2
=

∫ V2

V1

dV

〈δV 2〉
(4)

to obtain values of X, also up to a constant. The cal-
culation of Â utilizes equations analogous to Eqn. 3 and
Eqn. 4; the tensorial aspects will be discussed in more
detail below. Each of these methods is used separately
on both the subsystem and the bath, in order to test for
equilibration.

Our experimental apparatus is shown to scale in Fig. 1.
The granular monolayer consists of 1004 bi-disperse pho-
toelastic (Vishay PhotoStress PSM-4) disks with a thick-
ness ≈ 3.1 mm and diameters dS = 11.0 mm and
dL = 15.4 mm, in equal concentrations. The particles are
supported on a thin layer of air provided by a steady flow
of pressurized air through a porous polypropylene sheet
with a nominal pore size of 120 µm. This minimizes the
effect of friction between the particles and the surface,
but does not otherwise cause significant dynamics once
the system is jammed. The sheet is leveled (particles do
not drift to one side) and flat (particles do not cluster).
The system consists of an outer bath NB = 904 and an

inner subsystem NS = 100. Particles in the bath have a
friction coefficient µB ≈ 0.8, while particles in the inner
subsystem are wrapped with a thin layer of PTFE tape
with a µS < 0.1.

Images of the particle positions, photoelastic images
for measuring vector contact forces, and identification of
the subsystem particles are recorded with three separate
images captured by a single CCD camera located above
the apparatus (see Fig. 1b). Particle positions are iden-
tified using a white light image (see Fig. 1c), from which
the centers are detected with an accuracy of ≈ 0.01dS
using a Hough transform. The photoelastic images (see
Fig. 1d) are captured using reflective photoelasticity, in
which the silvered back side of each particle reflects polar-
ized light back to the camera. Photoelasticity allows for
the numerical determination of the normal and tangen-
tial forces at each contact point, as required to measure
Σ̂. Similar to the methods pioneered by [23, 24], we min-
imize the error between the observed and fitted image
of the particle using a non-linear least-squares optimiza-
tion. Details and source code are available for down-
load at [26]. The third image is taken using black-light
illumination to identify the subsystem particles, which
are tagged with ultraviolet-sensitive ink (see Fig. 1e).
The subsystem comprises all low-µ particles which are
Voronöı neighbors with at least one other particle in the
subsystem.

The particles are confined within a square region (max-
imally 50×50 cm) imposed by two stationary walls posi-
tioned by stepper motors, as shown in Fig. 1a. The sys-
tem is initially in a dilute, well-mixed , un-jammed state,
with the global volume fraction Φ . 0.6. The two walls
bi-axially compress the system by a series of small steps of
constant size (∆Φ = 0.0009, equivalently ∆x = 0.3 mm
or 0.02 rL). With each step of the wall, the three im-
ages are recorded, and data is collected over a series of
volumes corresponding to 0.775 < Φ < 0.805, giving 30
different volumes for each compression cycle. Steps con-
tinue until the gradient squared of the force image [27]
indicates a pressure threshold has been reached; this re-
duces the risk of particles buckling out of plane. The
walls then re-dilate to the dilute state, and the particles
are then mixed while maintaining subsystem continuity;
this protocol is repeated 100 times.

During the compression phase of each quasi-static cy-
cle, we observe the percolation of force chains throughout
both the bath and the subsystem at a value Φperc. As
the system is further compressed beyond this point, the
contact forces grow in strength and the average number of
contacts per particle increases. For the set of 100 cycles,
this threshold occurs over a range 0.782 < Φperc < 0.792,
where the width of the distribution is indicative of finite
size effects [28, 29]. The ratio of un-jammed to jammed
systems at a given Φ is shown in Fig. 2d. We define ran-
dom loose packing as ΦRLP = 〈Φperc〉 ≈ 0.787 as the
center of this distribution.
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FIG. 1. Color online. Schematic of apparatus showing (a)
two walls bi-axially compressing an array of disk-shaped par-
ticles composed of an outer subsystem (black, high µ) and
an inner subsystem (red, low µ) and (b) reflective photoelas-
ticity on air-floated particles. Light shines from green LEDs
through a linear polarizer (P) a wavelength-matched quarter
wave plate (Q) before entering the photoelastic material. A
mirrored surface on the bottom of each particle reflects light
back through the particle. A second quarter-wave plate and
linear polarizer are mounted on the camera to resolve the pho-
toelasticity. Three images of each configuration are recorded:
(c) unpolarized white light for locating particle positions, (d)
polarized green light showing isochromatic fringes for calcu-
lating contact forces and (e) an ultraviolet light for identifying
the low-µ particles.

We calculate the distribution of local volumes P(Vm)
over clusters of size m, using the sum of individual rad-
ical Voronöı volumes obtained from the Voro++ soft-
ware [30]. Each cluster is defined as the m − 1 nearest
neighbors surrounding a central particle. For m = 1,
P(Vm) has two distinct peaks which correspond to small
and large particles [18]. With increasing cluster size, the
bimodal aspect of P(Vm) disappears, but even for large
cluster sizes (m > 100), the distribution remains asym-
metric and non-Gaussian [18]. In Fig. 2a, we show P(Vm)
for three values of Φ with m = 48; the value of m is large
enough so that P(Vm) does not show any features arising
from bi-dispersity.

In Fig. 2b, we show the ratio Pi(V )/Pj(V ) where the
reference system j is Φ = 0.784. In practice this can
be done with any two systems so long as there is suffi-
cient overlap between their histograms. As the ratio of
Pi(V )/Pj(V ) is well-approximated by an exponential in
V , the compactivity can be calculated using Eqn. 3. The
inverse compactivity, 1/X, is also calculated using FDT
using Eqn. 4, where the integrand is approximated us-
ing a third order polynomial. Each method determines
1/X only up to an additive constant, which is adjusted
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FIG. 2. Color online. (a) Volume histograms, P(V ), for
Φ = 0.776 (N), 0.784 (�), and 0.802 (•) with m = 48. (b) A
semi-logarithmic plot of the ratio each histogram with respect
to the Φ = 0.784 distribution, i.e. Pi(V )/Pi=2(V ). (c) The
inverse compactivity given by Eqn. 3 plotted as a function
of the inverse volume fraction where µB are shown as black
• and µS are red �. Large/small symbols denote jammed/un-
jammed configurations, respectively. Errorbars shown are un-
certainties in P(V ) and propagated through the calculation.
The inverse compactivity given by the FDT method (Eqn. 4),
is shown with the solid line for comparison. (d) The ratio
of number of jammed/un-jammed configurations recorded at
each Φ.

so that XRLP = ∞. In Fig. 2c, the inverse compactiv-
ity is shown for both the bath (1/XB) and the subsystem
(1/XS). We find good agreement between X(Φ) given by
the overlapping histogram method and by the fluctuation
dissipation theorem. In addition, for 4 < m < 50, we ob-
serve X to be approximately independent of m. However,
we find that the compactivity of the bath is not equal to
that of the subsystem (XB(Φ) 6= XS(Φ)). Because the
slopes of the two curves differ, this observation cannot be
accounted for by adjusting the additive constant (effec-
tively, adjusting ΦRLP ) for the two particle types. This
represents a failure of the zeroth law for X. However, it is
possible that equilibration would occur under alternative
preparation protocols, for instance those in which parti-
cle rearrangements were more prevalent (e.g. tapping or
shearing.)

We can take further advantage of the accessibility of
both jammed and un-jammed states within in the center
of the range of explored Φ. While the Edwards ensemble
is not defined for un-jammed systems, we can nonetheless
carry out the histogram analysis as performed on the
jammed systems. In this regime, we find that the P(Vm)
histograms cannot distinguish between the jammed and
un-jammed states. Furthermore, the measured values of
X decrease continuously from above ΦRLP to below; this
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FIG. 3. Color online. (a) Distribution of σp where m = 8
and Γ = 0.0007 (H), 0.0010 (�), 0.0015 (•), and 0.0024 Nm
(N). A semi-logarithmic plot of the (b) ratio Pi(σp)/Pj(σp)
where the reference system j is Γ = 0.0015 Nm. The pressure
angoricity AP and shear angoricity Aτ are shown as a function
of Γ where the results using overlapping histograms for µB and
µS are shown as black ◦ and are red ♦, respectively. The solid
line is the angoricity calculated using FDT. The gray dashed
lines provide a visual reference of the slopes 0.15 and 0.45,
respectively. Inset: The scaled variance 〈δσ2

p〉 of the Pj(σp)
distribution, as a function of the cluster size m.

is an undesirable characteristic.

The stress ensemble also provides a Boltzmann-like dis-
tribution in the stress, as given in Eqn. 2. In the case of
frictionless grains, the angoricity Â is a scalar due the off-
diagonal components in Σ̂ being zero. In any real granu-
lar system, friction is present and a shear-free state is not
readily obtained. Therefore, Σ̂ is a symmetric tensor with
non-zero off-diagonal components and can be reduced to
two independent components related to the pressure and
shear stress. The pressure angoricity Ap and the shear
angoricity Aτ are conjugate to σp = (σ1 + σ2)/2 and the
στ = (σ1 − σ2)/2, respectively [8], where σ1,2 are the
principal stresses. The average hydrostatic pressure per
particle in the system is given by Γ = Tr Σ̂/N . Both
Ap and Aτ are obtained using the method of overlapping
histograms (analogous to Eqn. 3) and the FDT (analo-
gous to Eqn. 4). With each method, A is calculated up
to an additive constant so that 1/A→ 1/A+ CA, where
CA satisfies A→∞ as Γ→∞.

In Fig. 3a, the local distribution of pressure P(σp)
is shown for m = 8 on configurations over a range
0.0006 < Γ < 0.0025 Nm. The ratio Pi(σp)/Pj(σp)
is exponential in σp (see Fig. 3b, similar results for στ
not shown), as required by the stress ensemble analogue
of Eqn. 3. In addition, we observe that the variance of
σp is proportional to m, which is consistent with S be-

ing an extensive entropy (see Fig. 3c). We are there-
fore able to measure both the pressure angoricity Ap the
shear angoricity Aτ using their corresponding distribu-
tions, shown in Fig. 3c as a function of Γ. We find that
Ap,τ are independent of m for m > 3, as also observed in
simulations [7, 8], and that values obtained from the his-
togram method (points) and the FDT method (solid line)
are in approximate agreement. Finally, we find that for
either the shear or compressional angoricity, the values
measured in the bath and in the subsystem are equiv-
alent, signifying the angoricity is equilibrating between
the subsystems.

Nonetheless, the values of Aτ and Ap do not match
each other, with the shear angoricity growing faster as
a function of Γ. We find the angoricity is given by
A = b Γ for both pressure angoricity and shear angoric-
ity, where bp = 0.153± 0.004 and bτ = 0.450± 0.020, re-
spectively. For a two-dimensional frictionless shear-free
system, the stress ensemble predicts bp = 0.5 at the iso-
static point [7, 8]. Above the isostatic point, the stress
ensemble predicts bp to be a function of the average con-
tact number. The disagreement between the frictional
and frictionless values of bp implies friction significantly
affects the density of states.

We have measured both compactivity X (conjugate to

volume in the Edwards ensemble), and angoricity Â (con-
jugate to the stress tensor in the stress ensemble), in a
laboratory granular system using particle-scale charac-
terizations. While we found that while the value of X
calculated using the overlapping histogram method was
consistent with the value found using the fluctuation-
dissipation theorem, it failed to equilibrate between non-
identical systems, making it a poor state variable. A
similar failure is likely behind previous measurements
by Schröter et al. [17], in which two granular materi-
als with different frictional properties, prepared using
the same protocol, were found to have different globally-
measured values of X. In contrast, we observed that
the temperature-like variable Â does successfully equi-
librate between a subsystem and bath with dissimilar
inter-particle friction coefficients, as would be required in
order to have a valid zeroth law. Moreover, we find agree-
ment with the prediction that angoricity should scale lin-
early the hydrostatic pressure [8]. These successes make
angoricity a promising state variable for frictional gran-
ular systems.

One downside to using angoricity as a state variable,
particularly in experiments, is that its calculation re-
quires the determination of both normal and tangential
forces. While there has been a long history of measuring
normal forces at the boundaries of granular systems [31–
35], particle-scale measurements have seen more limited
development. Outside of photoelastic particles such as
those used here, measurements typically exist only for
normal forces, whether the systems are frictional (tan-
gential forces are neglected) [36, 37] or frictionless [38–



5

40].

It is possible to understand the success of the stress en-
semble over the Edwards (volume) ensemble by consider-
ing the underlying physics behind the conserved quan-
tities in each. Under Newton’s third law, forces and
torques must be strictly balanced at each force contact,
while volume is merely constrained globally. As a re-
sult, our subsystem differed from the bath not only in
the measured X, but more conventionally in the mean
local volume fraction.

In fact, the full canonical Edwards ensemble [6] uni-
fies the volume and stress ensembles, where the density
of states depends on both V and Σ̂, and it has recently
been argued [41, 42] that the two should not be con-
sidered separately. The classic phenomenon of Reynolds
dilatancy [43] under which shear induces a bulk expan-
sion similarly suggests that such a coupling is important.
Nonetheless, we observed here that angoricity can be in-
dependently equilibrated, and future experiments should
more fully investigate the relationship between ensem-
bles, the relative importance of shear and compression,
and the role of friction on the density of states.
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