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We demonstrate how the optical gradient force between two waveguides can be enhanced using
transformation optics. A thin layer of double-negative or single-negative metamaterial can shrink
the interwaveguide distance perceived by the light, resulting in a more than tenfold enhancement
of the optical force. This process is remarkably robust to the dissipative loss normally observed in
metamaterials. Our results provide an alternative way to boost optical gradient forces in nanopho-
tonic actuation systems and may be combined with existing resonator-based enhancement methods
to produce optical forces with unprecedented amplitude.

PACS numbers: 78.67.Pt, 41.20.Jb, 42.70.-a

The momentum of light has been a fascinating subject
for scientists for several centuries [1, 2] and even nowa-
days, the true nature of the photon’s momentum raises
a lot of attention [3]. In everyday life, this momentum
is normally too small to have any significant effect, but
in nanoscale devices the transfer of linear momentum be-
tween light and matter and the associated optical forces
start to play an increasingly important role [4]. Gener-
ally, these forces can be divided into scattering and gradi-
ent forces, depending on whether the transferred momen-
tum is parallel or perpendicular to the direction of prop-
agation. Optical scattering forces have been used to cool
down atoms through the interaction with intense laser
light [5] and, more recently, for the generation of tractor
beams [6] and in the field of cavity optomechanics where
the coupling between the optical and mechanical modes
of a cavity is exploited to manipulate the vibrations of a
mechanical system [7, 8]. Optical gradient forces are used
in optical tweezers, where microscopic dielectric particles
are trapped and moved by laser beams towards regions
of highest intensity [9].

Recently, optical forces have been studied acting upon
metamaterial constituents to manipulate these elements
on a mesoscopic level [10–13]. On the macroscopic level,
it has been suggested that optical forces could be em-
ployed for all-optical device actuation, since they can
generate measurable displacements in nanophotonic, op-
tomechanical systems [14–17]. Indeed, when two wave-
guides are closely spaced apart, the interaction of the
evanescent waves of one waveguide with the other gener-
ates an optical force directed perpendicular to the wave-
guides. The force can be repulsive or attractive depend-
ing on the relative phase of the optical fields in the wave-
guides [14, 18]. Although the optical force—with a typi-
cal magnitude of the order of piconewtons per milliwatt—
is large enough for exciting experiments in optomechan-
ics, larger forces would be favorable for photonic systems
involving optical device actuation [19–21].

In this letter, we propose a novel mechanism to en-
hance optical gradient forces using the method of trans-
formation optics. The idea originates from the observa-

tion that the optical gradient force between two wave-
guides decays exponentially with the distance between
the waveguides [14]. Transformation optics, however, al-
lows to engineer the interwaveguide distance perceived
by light [22, 23] . We achieve this result by designing a
medium that annihilates the optical space between two
objects by implementing a folded coordinate transforma-
tion [24–26] (see Supplemental Material [27]). We study
two waveguides separated by such an annihilating optical
medium. For symmetry purposes and practical feasibil-
ity, the medium can be attached to the interior bound-
aries of both waveguides, as shown in Fig. 1. The optical
forces between the two waveguides are calculated using
the Maxwell stress tensor formalism.

In Fig. 2, we evaluate the optical force acting upon
one of the waveguides as a function of the separation dis-
tance. We find excellent agreement between the force
acting upon the transformed waveguides and the force
acting upon two traditional waveguides without metama-
terial cladding—positioned at a closer distance dw/o =
dwith − 2t, where t is the thickness of the annihilating
coating. This relation between the physical distances
dw/o and dwith is determined by the thickness t and the
material parameters ǫ and µ of the metamaterial. For
instance, to annihilate a distance that is α times larger
than the thickness t of the metamaterial slab, the re-
quired permittivity and permeability components in the
case of TE polarization are µxx = −1/α, µyy = α and
ǫzz = −α. It is important to note that the equivalence
shown in Fig. 2 is valid for any transformation-optical
medium that changes the gap distance between the wave-
guides or a transformation that changes the thickness of
the waveguide’s core. As such, the analogy between the
two setups offers an elegant framework to determine the
optical force between waveguides with complex material
parameters. This also demonstrates that transformation
optics remains valid if the design or calculation of optical
forces is involved.

The physics of the transformation of the interwave-
guide distance as shown in Fig. 2 can be further under-
stood by looking at the field profile of the electromagnetic



2

z

x

y

Incident light

Force

FIG. 1: The setup to enhance the optical gradient force between two dielectric slab waveguides. A metamaterial cladding
(shown in blue) is derived from a folding transformation to reduce the distance between the two dielectric waveguides (shown
in grey) perceived by light. Since the optical gradient force decays with distance, the metamaterial slab allows enhancing the
force.

modes. The annihilating metamaterial in between the
two waveguides acts as a perfect lens [28] that amplifies
the evanescent tails of the waveguide mode before they
decay in the air gap [compare Fig. 3(a) with Fig. 3(b)].
The evanescent tails therefore interact in the same way as
if they were at a closer distance, resulting in an identical
electromagnetic force. A possible implementation of the
left-handed metamaterial would be the structure shown
in Fig. 1. The unit cell of this metamaterial consists of
a double layer of split-ring resonators. The permittivity
in the z-direction and the permeability in the x-direction
can be generated by, respectively, the electric and the
magnetic moments of the individual split-ring resonators.
In addition, a magnetic moment can be generated in the
y-direction due to the mutual interaction of the ring res-
onators acting as a wire pair with circulating currents in
the xz-plane [29–33].

In order to compare the magnitude of the optical force
between a metamaterial-enhanced setup and a traditional
setup, two important effects have to be taken into ac-
count. First, light has to be coupled into the structure,
e.g., from a waveguide without the metamaterial cladding
[as illustrated in Fig. 4(a)]. This will reduce the amount
of power into the enhanced waveguides because of reflec-
tion and scattering into leaky modes. Second, the meta-
material cladding will result in extra losses that dissipate
some of the input power. In Fig. 4(b), we plot the opti-
cal force on a 10 µm-long section of the waveguide as a

function of the gap distance for several implementations
of the metamaterial cladding. As a reference, we also
show the result for the traditional configuration without
metamaterial cladding (black line), which is consistent
with the results reported in the literature [17]. For a fair
comparison, the gap distance in the latter configuration
is chosen to be the same as the distance between the
metamaterial claddings in the enhanced setup (compare
the insets of Fig. 2).

The blue curve corresponds to a configuration with a
100 nm-thick left-handed metamaterial slab (ǫ, µ = −1)
with a loss tangent of 10%. Two regimes can be distin-
guished in this curve. The linear regime (gap larger than
200 nm) is a shifted version of the curve corresponding
to the traditional configuration without metamaterials.
This reconfirms the transformation-optical enhancement
of the force by way of the metamaterial slabs, even when
realistic losses are included. For gap distances smaller
than 200 nm, the force decreases again. Since the two
left-handed slabs of 100 nm each completely annihilate
the inner gap when the gap distance equals 200 nm, the
optical force is maximized at this point. A further re-
duction of the gap results in an overcompensation and
decrease of the optical force. This result is consistent
with the fact that the largest optical force between two
slab waveguide is found when they are positioned adja-
cent to each other and thus limits the maximum optical
force amplification between two waveguides for a given
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FIG. 2: Equivalence between the optical force in the tra-
ditional configuration of two silicon slab waveguides with
n = 3.476 and the transformed setup of silicon waveguides
(n = 3.476) with a metamaterial medium attached to it
(n = −1, t = 0.25a). The blue line shows the optical force be-
tween two bare waveguides as a function of the gap distance
dw/o. The red circles represent the optical force generated
in the transformed configuration as a function of the gap be-
tween the metamaterial slabs dwith. The metamaterial slab is
designed such that dwith = dw/o + 0.5a. In these simulations,
the fundamental TE modes are considered for a/λ0 = 0.39,
corresponding to a typical setup where λ0 = 1.55 µm and
a = 600 nm.

input power.

The maximum amplification in the waveguide pair
with a double-negative metamaterial as the annihilating
medium is somewhat limited by the relatively high loss
tangent of the double-negative metamaterial. This dissi-
pative loss is closely related to the resonant constituents
required to achieve negative permeability [34]. To over-
come this limitation, we propose to implement the anni-
hilating slab using a poor man’s lens, i.e., we replace the
double-negative metamaterial by a single-negative meta-
material [28]. This is a legitimate approximation if we
work with TM polarized light, for which only the per-
mittivity of the metamaterial determines the mode profile
and the resulting optical forces. Since the slabs no longer
require negative permeability, we can use nonresonant
metamaterials with smaller loss tangents. For example,
for a poor man’s lens implementation of the annihilating
medium with ǫ = −1 and loss tangent of 10%, we observe
in Fig. 4(b) (red circles) that the maximal optical force
enhancement equals 16.4, which is actually larger than
with the double-negative metamaterial cladding. When
we reduce the loss tangent to 5% (red triangles) and 1%
(red diamonds), as appropriate for single-negative ma-
terials, we reach enhancement factors of up to 243. The
use of single-negative metamaterials, which can be imple-
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FIG. 3: Electric field profiles of the fundamental mode in the
waveguide pair. (a) The traditional configuration of two slab
waveguides (shown in grey). If the waveguides are placed close
to each other, the evanescent tails interact with the wave-
guides, resulting in a gradient force between the two slabs.
(b) The configuration with a metamaterial cladding as anni-
hilating medium. In between the slab waveguides, we place a
metamaterial slab (shown in blue) that amplifies the evanes-
cent tails. We demonstrate that this effect enhances the op-
tical gradient force considerably.

mented with a stack of thin metal sheets, has the added
advantage of low dissipative loss, so that thermomechani-
cal forces will be unimportant. Stacked metal sheets have
a similar area moment of inertia (compare the Young’s
moduli for silica and gold), i.e., their mechanical prop-
erties will not be adversely affected by the metamaterial
structure.

In conclusion, our study shows that transformation op-
tics allows for the design of materials which can signif-
icantly enhance the optical gradient force between two
slab waveguides—the prototype system for optical gra-
dient forces. When the space-annihilating waveguide
cladding is implemented by a double-negative metamate-
rial, the force amplification is limited by dissipative loss.
However, we can also use a single-negative metamaterial
as a “poor man’s” version of the annihilating medium.
This approach results in much larger force enhancement
factors while not impacting the mechanical properties of
the waveguide system. We expect that further develop-
ments using hyperbolic media will be used to implement
this concept at terahertz and optical frequencies. The
principle outlined in this Letter may be generalized to
other microphotonic force systems and, importantly, it
may be combined with existing resonator-based enhance-
ment methods [17, 20] to produce optical forces with un-
precedented amplitude. This may lead to new ways of
optical actuation in nano- and micrometer-scale devices.
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FIG. 4: The optical force on a 10 µm-long waveguide section
as a function of the gap distance between the waveguides for
TM-polarized light (λ0 = 1.55 µm, Pinput = 1 µW) for sev-
eral metamaterial implementations of the annihilating slabs.
(a) Some of the input power is lost because of reflection on the
metamaterial layer and because of scattering in leaky modes.
Note also the amplified evanescent waves clearly visible in the
gap between the metamaterial slabs. (b) The black curve is
the reference of bare silicon waveguides (n = 3.476). The
blue curve corresponds to a waveguide pair with left-handed
claddings (Re[ǫ] = Re[µ] = −1, loss tangent = 10%). The red
curves show the resulting force for a poor man’s implementa-
tion of the annihilating slabs in which the permittivity equals
−1 and the loss tangent is 10%, 5% and 1%, respectively.
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