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We extend the terrace-step-kink model of crystal growth to impure solutions where the impurities
act as barriers to step motion. The effects of supersaturation, step curvature, step repulsions and
impurities on step motion are treated in a unified free energy framework. The model reproduces
several features seen in experiments on growth of KDP crystals, wherein a dead zone at low super-
saturations, and a recovery of crystal growth by motion of large coherent step bunches at larger
supersaturations are observed. We identify a key feature of solution growth that leads to these
effects.

PACS numbers:

Crystal growth at low temperatures is characterized
by the attachment and detachment of adatoms at the
edges of steps. Under ideal conditions growth on a vic-
inal surface proceeds by step flow, with steady motion
of a uniform train of steps. However the addition of
small concentrations of impurities can greatly change the
properties, morphology, and kinetics of the growing crys-
tal, with important consequences in both biological and
materials applications [1–4]. In a recent series of experi-
ments, De Yoreo and coworkers [5–7] studied the effect of
metallic ion impurities that locally inhibit step motion on
potassium dihydrogen phosphate (KDP) crystals grown
from a stirred solution. Using AFM imaging, they found
that at low supersaturation the impurities induced the
formation of v-shaped bunches of closely spaced steps as
the crystal growth slowed down and essentially stopped.
However, at larger supersaturation, they observed a re-
covery of growth to a rate approaching that of an im-
purity free solution. Surprisingly, the growth was domi-
nated by the motion of large step bunches, whereas iso-
lated steps still seemed immobile.

The initial step bunching at small driving force is quali-
tatively consistent with the classic Frank impurity model
[8], originally developed to describe vapor growth and
extended to two dimensions (2D) by Kandel and Weeks
(KW) [9]. Impurities are assumed to adsorb on the crys-
tal surface at random times and positions. An impurity
immediately in front of a step impedes its motion, but
once the step moves beyond it, the impurity is assumed
to be desorbed or incorporated into the crystal and does
not affect the motion of other steps. This interaction be-
tween steps and impurities causes a uniform step train to
become unstable and form step bunches [8, 9].

Here we adapt these ideas to stirred solution growth,
where the driving force for adatom attachment is essen-
tially constant and independent of the configuration and
spacing of neighboring steps. Fig. 1 schematically shows
a top view of a typical surface configuration with both
steps and impurities present. Steps on the vicinal crys-

tal surface are described by the terrace-step-kink (TSK)
model, which has been widely used to describe impurity-
free step motion in both vapor and solution growth [10].
In this coarse-grained model individual atomic positions
in the bulk crystal or solution are formally integrated
out and we focus only on configurations of vertical step
segments, pictured here as heavy lines that lie along the
links of a 2D square lattice. Step segments move right
(left) as adatoms attach to (detach from) the step and
this process defines the fastest relevant time scale in the
model. The energy of a specific configuration of step seg-
ments in the absence of impurities is given by an effective
TSK Hamiltonian as described below. As in the classic
Langmuir model [11] impurities are treated as finite-sized
particles that deposit or desorb randomly at prescribed
rates on the centers of the cells of the 2D lattice. We as-
sume these rates for isolated impurities are much slower
than the basic hopping rate for step segment fluctuations.
At most one impurity can occupy a site and for simplicity
they do not diffuse.

Our generalized Frank model effectively couples the
TSK and Langmuir models together with important con-
sequences for crystal growth. Frank and KW originally
suggested a dynamical removal of impurities by moving
steps, but we find that most effects can be captured in
a simple energetic model that adds an extra repulsive
(positive) energy EI to the step Hamiltonian whenever
a step segment is next to an impurity. This interaction
slows down crystal growth by inhibiting the approach of
a nearby step to an adsorbed impurity. However, when a
step segment successfully moves next to an impurity we
assume that the impurity desorbs at a much larger rate
than that of an isolated impurity.

As suggested by Fig. 1, nS steps, each consisting of Ly

vertical segments reside on the links of a 2D square lattice
with periodic boundary conditions in both directions. In
general the impurity size in the single occupancy Lang-
muir model set both the scale of the lattice spacing and
the size of the effective step segments in the TSK model.
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FIG. 1: Top view of a vicinal surface with steps and impu-
rities. A step contains Ly discrete vertical segments that are
placed on the links of a lattice of total width Lx. The surface
height decreases when crossing a step segment in the positive
X direction. The figure above shows many such segments
joined together to form an array of steps. Impurities are rep-
resented above by colored circles that singly occupy centers
of lattice sites.

The position of the yth vertical segment of the mth step
on the lattice is given by Xm(y). There are N = Ly×Lx

cells in the lattice, and w = Lx/nS is the terrace width
in an ideal vicinal surface with equally-spaced steps. We
use occupation numbers [abc] to specify the state of a
particular lattice cell, where a = 1 (c = 1) if the left
(right) link in the cell is occupied by a step segment and
zero if it is vacant, and similarly b = 1 if the cell center
is occupied by an adsorbed impurity.
We use this cell description to specify a discrete time

kinetic Monte Carlo model for impure crystal growth.
The basic process consists of choosing a cell at random
and trying to make changes in its occupation numbers
[abc] using rules reflecting the desired physics. Distances
are measured in units of the lattice spacing and time in
units of a surface sweep, where the cell selection process
is repeated N times. Thus on average in a sweep each
step segment is chosen twice, once with a possibility to
move left and once to move right.
The model is defined by specifying the transition prob-

abilities p([a′b′c′]|[abc]) in a given surface configuration
from an initial cell state [abc] for all permitted choices of
final cell state [a′b′c′]. Here we assume

p([a′b′c′]|[abc]) = p∗S([a
′c′]|[ac])p∗I(b

′|b) (1)

where p∗S([a
′c′]|[ac]) denotes a transition of the local step

configuration in the cell. The ∗ superscript indicates that
this transition is modified by the initial impurity state.
Similarly, p∗I(b

′|b) describes impurity transitions as mod-
ified by neighboring step segments.
We use the standard Metropolis criterion for the step

transitions, where we determine the total energy change
∆E∗

tot associated with a possible local segment move.
The trial move is always accepted if ∆E∗

tot < 0 and it
is accepted with probability exp(−∆E∗

tot/kBT ) for pos-
itive ∆E∗

tot, where kB is Boltzmann’s constant and T is

the temperature.
In the absence of impurities p∗S([a

′c′]|[ac]) reduces to
pS([a

′c′]|[ac]), which describes possible step transitions in
a pure TSK model, and we discuss this case first. Con-
sider for concreteness pS([01]|[10]) where a segment at
Xn(y) moves to the right, reflecting adatom attachment.
The total energy change ∆Etot has two components. The
first is the equilibrium energy change ∆ES from the local
segment move as determined from the TSK step Hamil-
tonian. In this case it takes the standard form [10]

∆ES = 2G
[

1/(Wn(y))
3 − 1/(Wn−1(y))

3
]

+ γ [Xn(y + 1) +Xn(y − 1)− 2Xn(y)] , (2)

where Wn(y) = Xn+1(y) − Xn(y) is the local terrace
width, the parameter G takes into account the strength
of the repulsions and γ plays the role of a line tension.
Atoms in a supersaturated solution have a higher free

energy ∆Esol than at a kink site of an isolated step (taken
as the energy zero) and this nonequilibrium exchange en-
ergy or driving force as the adatom joins the step should
be accounted for in ∆Etot as well. Thus for pS([01]|[10])
we have ∆Etot = ∆ES − ∆Esol. In a backwards move
pS([10]|[01]) reflecting adatom transfer from the step to
solution, ∆Esol enters with the opposite sign. This biases
the acceptance probabilities and leads to crystal growth
with a net motion of steps to the right.
In the simple impurity model discussed above we add

an energy EI if a step segment is next to an impurity.
The relevant transition probability p∗S([a

′c′]|[ac]) in Eq.
(1) now involves the total energy change in the presence
of impurities, ∆E∗

tot = ∆Etot + ∆EI , where ∆EI is the
change in the step-impurity energy resulting from the
step move. Note that this involves impurities on adjacent
sites as well as the site where the step move takes place.
Impurity transitions in Eq. (1) can be easily modified

to incorporate step-induced desorption. Here we assume
impurity deposition is unaffected by steps so p∗I(1|0) =
pI(1|0) = Fon ≪ 1 but if an impurity is next to a step its
removal rate p∗I(0|1) = F ∗

off is much greater than Foff ,
the rate in the absence of the step.
We choose model parameters (with energies given in

units of kBT ) describing strong impurity blocking, EI =
6, and slow intrinsic impurity adsorption/desorption
Fon = Foff = 0.00002 but with very efficient step-
induced desorption F ∗

off = 1. Changing the line ten-
sion and the repulsion parameter G did not qualitatively
affect results so we present data only for γ = 1.0 and
G = 0.0 over a wide range of driving forces. Entropic
repulsion [10] is always present since two step segments
can never occupy the same lattice link.
The main effects of the step-induced removal of impuri-

ties on crystal growth can be seen from a model with only
a single step with periodic boundary conditions. This de-
scribes the motion of a uniform step train with terrace
width w = Lx where step bunching is not possible. Fig-
ure 2 gives simulation results for the stable steady state
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FIG. 2: (color online) The steady state velocity for uniform
step trains as a function of the driving force ∆Esol for differ-
ent widths. Comparison to the impurity free surface and the
surface with a saturated impurity field are also shown. Lines
through data points are guides to the eye.

velocities as a function of driving force ∆Esol and terrace
width w. There are two limiting cases. The impurity-free
crystal has the maximum possible growth rate. This is in-
dependent of terrace width, linear in ∆Esol at small driv-
ing force, and will reach a finite limit at very large driv-
ing force. With impurities present, the smallest possible
growth rate at fixed ∆Esol occurs in the limit w → ∞
where the step train moves in the saturated impurity
field seen on a flat surface. At small driving force the
high concentration of impurities creates a “dead zone”,
usually described by an impurity fence model controlled
by line tension [12], where crystal growth is strongly sup-
pressed.
Steady states at smaller w can have a much higher

velocity because impurities are continually removed as
the steps advance, reducing the density seen by the next
step. At small driving forces a dead zone is still seen but
beyond a threshold that increases with w the velocity
rapidly increases and approaches that of the impurity
free crystal, reminiscent of the experimental results.
This dependence on terrace width can be easily under-

stood from results for the Langmuir model on an infinite
terrace. Here the average impurity density n ≤ 1 at a
site satisfies the equation dn/dt = Fon(1 − n) − Foffn,
whose solution starting from an impurity free surface is

n(t) = n∞[1− e−t/τfill ] (3)

The “filling time” τfill ≡ (Fon + Foff )
−1 sets the time

scale for the newly deposited impurities to reach a sig-
nificant fraction of the saturated equilibrium density
n∞ ≡ Fon/(Fon + Foff ).
Consider now a uniform 1D step train with terrace

width w moving at a steady state velocity vss, where a
step is at x = 0 at time t0. We assume perfect Frank
impurity removal, with impurity concentration zero just
behind the leading step at x = w. Using Eq. (3) the
density of new impurities at any intermediate position
0 < x < w at t0 is simply determined by the ratio of the

FIG. 3: (color online) The average step velocity as a func-
tion of time for different values of ∆Esol. The top left panel
shows the average impurity concentrations over the same time
interval. Snapshots of a 1000 × 1000 part of the system cor-
responding to points A, B, C and D are also shown.

“exposure time” tex(x) ≡ (w − x)/vss since the step at
w passed x to the filling time:

nss(x) = n∞[1− e−tex(x)/τfill ]. (4)

With periodic extensions to other terraces, Eq. (4) also
gives the steady state profiles in a frame where x moves
with the steps. This kinematic relation between the im-
purity density and w holds for any possible vss in this
model. The actual steady state velocity generated by a
fixed set of other parameters is an increasing function of
the driving force and a decreasing function of the impu-
rity density n+

ss just in front of the step. n+
ss increases

at larger w because of the larger exposure time. Thus
a smaller driving force is needed to achieve a particu-
lar steady state velocity when w is smaller, as illustrated
in Fig. (2). Earlier qualitative analysis of experimental
data had recognized the importance of considering char-
acteristic adsorption times for impurities relative to the
terrace lifetime (exposure time) [5, 7].
We now discuss time-dependent results for the full

model with many steps, where the impurities also in-
duce step bunching and 2D step patterns. We carried
out simulations for a range of driving forces with spe-
cial initial conditions where a uniform step train with
w = 100, Ly = 1000, and ns = 15 initially encounters the
maximum impurity density n∞ everywhere. As shown in
Fig. 3, for ∆Esol = 0.4 the system is essentially in a dead
zone where the growth velocity remains very small and
there is little change in the impurity density with time.
In particular the step pattern at point E is essentially
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unchanged from the initial pattern shown panel A.
Very different behavior is seen for ∆Esol = 1.0, which

is in the breakout region of the 1D steady state model in
Fig. 2. Initially each step moves with a very small veloc-
ity in the saturated impurity field ahead, while leaving a
greatly reduced density just behind it. If the next step
can reach this depleted zone before many new impuri-
ties deposit, it can move much faster. This establishes
a threshold driving force above which much more rapid
growth is possible. Fig. 3 illustrates both the large in-
crease in the average velocity when steps first reach the
depleted zones and the initial rapid decrease in impu-
rity density induced by the slowly moving steps (top left
panel). The average velocity continues to increase for
some time and can approach that of the idealized 1D
steady states seen in Fig. 2.
Moreover, an ideal straight step bunch can move even

faster than a single straight step in a given impurity
field [13] in our model because repulsive step-step inter-
actions suppress backwards moves in the bunch. But
a moving step bunch is no more efficient than a single
step in removing impurities in our model, so the speedup
depends only weakly on bunch size, with a maximum
observed speedup of about a factor of two under ideal
conditions. However, experiments find that particular
step bunches (supersteps and macrosteps) do move sig-
nificantly faster than individual steps in the breakout
region [5–7]. A more complex and nonlocal interaction
between steps and impurities is probably needed in our
model to reproduce this result. Since the impurities are
often charged, this seems physically plausible as well, but
detailed modeling seems quite difficult.
At longer times the simulations show that the average

velocity reaches a maximum and then slowly declines.
Panels A-D in Fig. 3 show snapshots of the emerging 2D
step bunch patterns for ∆Esol = 1.0 at the indicated
times [13]. The behavior is similar for ∆Esol = 1.5, but
the maximum velocity is larger and is attained faster.
This indicates that the uniform steady state solutions

shown in Fig. 2 are unstable. Driven by the basic Frank
instability, segments of adjacent steps initially pair to-
gether (panel B). V-shaped patterns with high impurity
density in front of the points begin to form (panels C and
D) as additional steps join the bunch [9]. Formation of
larger bunches increases the average terrace width and
the associated exposure time, eventually leading to to
slower growth at long times, as seen in point D. It would
be interesting to see if the experimental systems would
experience a similar decrease in growth velocity at longer
times.
In conclusion, even in its simplest form, our model cap-

tures many experimental results. It has steady states
with fast growth rates that strongly resemble experimen-
tal data. A key assumption in the model is that in a
well-stirred solution the driving force for step motion is

independent of the width of the terrace in front of the
step. Under appropriate conditions, this permits the for-
mation of large mobile step bunches, and much faster
crystal growth for a small range of supersaturation just
above the dead zone.

This model presents a general framework for describ-
ing impurity effects in crystal growth. By allowing a
dependence of the driving force on terrace width, the
model can describe vapor growth as well, and the kink
poisoning mechanism proposed to explain the behavior of
calcium oxalate crystals in the presence of citrate impu-
rities [14] is related to the behavior at large line tension
in our model. There also may be connections to ongoing
work on collective and local pinning effects induced by
(usually quenched) disorder in a wide variety of driven
condensed matter systems [15]. Further analysis, gener-
alizations and comparisons to related models will be the
subject of a longer article.
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