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We present a high-precision determination of the universal contact parameter in a strongly inter-
acting Fermi gas. In a trapped gas at unitarity we find the contact to be 3.06±0.08 at a temperature
of 0.08 of the Fermi temperature in a harmonic trap. The contact governs the high-momentum
(short-range) properties of these systems and this low temperature measurement provides a new
benchmark for the zero temperature homogeneous contact. The experimental measurement utilises
Bragg spectroscopy to obtain the dynamic and static structure factors of ultracold Fermi gases
at high momentum in the unitarity and molecular Bose-Einstein condensate (BEC) regimes. We
have also performed quantum Monte Carlo calculations of the static properties, extending from the
weakly coupled Bardeen-Cooper-Schrieffer (BCS) regime to the strongly coupled BEC case, which
show agreement with experiment at the level of a few percent.
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Ultracold atomic gases are unparalleled as a means to
quantitatively probe strongly coupled systems which lie
at the intersection of atomic [1], condensed-matter [2],
nuclear [3, 4] and high-energy physics [5, 6]. In this con-
text, two-component Fermi gases near a Feshbach reso-
nance have particular significance as they are generally
stable against inelastic decay. These universal quantum
systems [7–9] are characterized by strong coupling in the
form of s-wave interactions of short range r0 and large
scattering length a, such that the only scales left are ther-
modynamical: the density n or chemical potential µ, and
temperature T , as for an ideal gas. This situation, in par-
ticular the unitarity limit 0 ← kF r0 � 1 � kFa → ∞,
where kF is the Fermi wavevector [10], represents a major
theoretical challenge as there are no small parameters.
While no exact description exists, a variety of approx-
imate techniques have been developed; however, these
often give quite different predictions.

One of the key quantities characterizing these sys-
tems is the universal contact parameter C, introduced by
Tan [11, 12]. The contact derives from the short-range
correlations in strongly interacting quantum gases and is
the cornerstone of a number of exact relations describ-
ing properties such as the equation of state and dynamic
response functions [13–16]. Evaluating these exact re-
lations requires precise knowledge of C itself, which is
very challenging to compute with different calculations
varying by as much as 10% [17, 18].

In this letter we provide a new experimental bench-
mark measurement, with error bars at the 3% level, for
the contact at unitarity. This is furnished by a precise
determination of the dynamic and static structure fac-
tors using Bragg spectroscopy. In addition, we present
new Quantum Monte Carlo (QMC) calculations accurate
to the level of a few percent. Our results indicate that

theory and experiment are approaching a new level of
convergence, showing that this difficult problem is be-
coming tractable.

Experiments. The experiments presented here use a
gas of 6Li atoms prepared in an equal mixture of the
|F = 1/2,mF = ±1/2〉 spin states, evaporatively cooled
in a single-beam optical dipole trap. Interactions are
tuned to the unitarity limit by setting the magnetic
field to 833.0 G, near the pole of a broad Feshbach res-
onance. Following evaporation, the cloud of approxi-
mately N/2 = (300 ± 25) × 103 atoms per spin state is
loaded into a second optical dipole trap produced by a 10
W single frequency 1064 nm fibre laser, spatially filtered
to produce a deep trap with large harmonic region. We
calibrate the atom number by imaging atom clouds with
very high beam intensities [19, 20] and verify this result
with a precise measurement of the cloud size for a low
temperature gas with weak attractive interactions where
the modified Fermi radius can be calculated with high ac-
curacy [1]. The temperature at unitarity in the final trap
is 0.08± 0.01THO

F where EHO
F = kBT

HO
F = (3N)1/3~ω̄ is

the Fermi energy in a harmonic trap, ω̄ = (ωxωyωz)
1/3,

ωx = ωy = 2π × 97 Hz and ωz = 2π × 24.5 Hz. We
determine the temperature by fitting a Bold Diagra-
matic Monte Carlo prediction for the pressure equation
of state [21] to the measured pressure obtained from one-
dimensional (doubly integrated) density profiles [22, 23].

Bragg scattering is performed as in previous work [24,
25]. Two laser beams, detuned by approximately 600
MHz from the nearest atomic transition, illuminate the
atom cloud, intersecting at an angle of 2θ = 84◦. This
sets the probe wavevector k = (4π/λ) sin θ where λ =
671nm. The beams are derived from the same laser with
two separate acousto-optic modulators, driven by an am-
plified signal from a multichannel direct digital synthe-
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FIG. 1. (color online) Density-density response of a strongly
interacting Fermi gas (a) at unitarity (833 G) and (b) at
1/(kHO

F a) = 0.93 (783 G), as a function of ω/ωr. For the
Bragg momentum k = 4.20kHO

F these normalized spectra give
the dynamic structure factor S(k, ω) in units of ωr/N .

sizer. This allows us to precisely tune the relative fre-
quency difference ω with an accuracy better than 1 Hz.

To obtain the dynamic response we measure the mo-
mentum imparted to the cloud ∆P for a range of Bragg
frequencies. By imaging atoms in both spin states with
a short (850 µs) time delay between images we can de-
termine the centre of mass cloud displacement ∆X(∝
∆P ) [24] while remaining insensitive to drifts in the ini-
tial cloud position. We also carefully determine the maxi-
mum Bragg laser intensities we can use at different Bragg
frequencies and stay in the linear response regime [25].
Scaling our data by the product of the Bragg beam in-
tensities allows us to combine data measured at different
intensities into a single spectrum and optimize the signal
to noise. This, along with averaging 10-15 points at each
ω, greatly improves our measurement accuracy.

Figure 1 shows Bragg spectra obtained (a) at uni-
tarity and (b) at 1/(kHO

F a) = 0.93 where ~kHO
F ≡

(2mEHO
F )1/2 = 2.97 ± 0.05 µm−1 is the Fermi wavevec-

tor in the harmonic trap and m is the 6Li atomic mass.
The uncertainty in kHO

F is dominated by the atom num-
ber uncertainty. These spectra contain a narrow peak at
ωr/2 arising from the scattering of pairs and a broader
feature centred around ωr [25]. Error bars are the statis-
tical standard deviation of the data obtained at a par-
ticular frequency. At the high momentum used here
(k = 4.20kHO

F ) the response is proportional to the dy-
namic structure factor S(k, ω) [24, 26]. We scale each
spectrum by its first energy-weighted moment making
use of the f -sum rule for S(k, ω). This means the quan-

tity plotted

∆X(ω)∫
ω∆X(ω)dω

≡ S(k, ω)/ωr (1)

is the dynamic structure factor in units of ωr/N where
ωr = ~k2/(2m) is the recoil frequency. The integral of
these normalized spectra over ω gives the static structure
factor [27] which we find to be S(k = 4.20kHO

F ) = 1.182±
0.004 at unitarity, and 1.50 ± 0.02 at 1/(kHO

F a) = 0.93.
The error bars account for the statistical uncertainties in
the data.

With this precise determination of S(k) we can also
obtain a new measure of Tan’s universal contact param-
eter I for a trapped gas at unitarity. At this high mo-
mentum, the dimensionless contact can be found directly
as [25, 26, 28]

I
NkHO

F

=
4k

kHO
F

(
S(k)− 1

1− 4/(πka)

)
(2)

Using this expression we find I/(NkHO
F ) = 3.06± 0.08

at unitarity and 11.9 ± 0.3 at 1/(kHO
F a) = 0.93 ± 0.02.

The error bars include the uncertainty in kF as well
as S(k). This is significantly more accurate than pre-
viously published data [17, 28] and sets a new bench-
mark for theoretical calculations. Our value at unitarity
is some way below that obtained from measurements of
the equation of state [29] and from the frequency of col-
lective oscillations [30]; however, it is higher than found
using radio-frequency spectroscopy [31, 32] and photo-
association data [33, 34]. Comparing with different the-
oretical predictions our measurement is closest to, but
slightly above, recent many-body t-matrix calculations
[35, 36], yet lies below both a Nozières-Schmitt-Rink
(NSR) calculation [17] and zero temperature QMC re-
sults [37]. At 1/(kHO

F a) = 0.93 our measured contact
11.9± 0.3 is slightly below theory (∼ 12.35) possibly due
to finite temperature.
Quantum Monte Carlo calculations. We use QMC

techniques on a system of 66 fermions to accurately com-
pute the ground-state properties of strongly interact-
ing fermions in the thermodynamic limit [38, 39]. We
employ the same technique as in Ref. [37] to calculate
the dimensionless energy per particle ξ = E/EFG (the
Bertsch parameter) as a function of (kFa)−1, where EFG
is the corresponding energy of a non-interacting Fermi
gas, kF = (3π2n)1/3. For each value of (kFa)−1 we per-
form a variational optimization of the many-body wave
function, as described in Ref. [37, 40]. The best vari-
ational ansatz is then used as a trial wave function for
the projection in imaginary time. The fixed-node ap-
proximation is used to control the sign problem, and the
accuracy of the energy and other properties depends on
the quality of the variational wave function. The fixed-
node energy at unitarity is within a few percent of the
exact calculation of Ref. [38].
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FIG. 2. (color online) Trap-averaged contact parameter as
a function of kHO

F a. Green solid line is obtained from QMC
data combined with the LDA and the black dotted line is a
Nozières-Schmitt-Rink (NSR) calculation [17]. Red circles are
the new experimental points and the grey squares are exper-
imental data from Ref. [28]. At unitarity, the experimental
result is I/NkHO

F = 3.06 ± 0.08 compared with the QMC
value: 3.336 and NSR result: 3.26 [17]. At kHO

F a = 0.93 the
experiment yields 11.9± 0.3, while the QMC and NSR values
are ∼ 12.35 [17]. Inset: Equation of state, points are QMC
data and the solid line is a functional fit to these.

For each coupling strength we perform a different QMC
calculation, varying the effective range re of the two-
body interaction to extrapolate to the re → 0 limit.
This is necessary because the energy per particle ξ can
be strongly dependent on re, for different kFa. For
(kFa)−1 > 0.2, we find that the slope of E(re) is negative
and drops quickly as (kFa)−1 is increased [41]. Extrapo-
lating to the re → 0 limit is therefore crucial in the BEC
region, but much less important in the BCS regime.

The extrapolated value of ξ as a function of (kFa)−1 is
shown in the inset of Fig. 2. We then use the adiabatic
relation to calculate the contact for the homogeneous sys-
tem:

C

NkF
= −6π

5

∂ξ

∂(kFa)−1
. (3)

Using Eq. (3) we find the homogeneous contact to be 3.39
at unitarity and ξ = 0.3899(4) which is approximately 4%
higher than a recent measurement [42].

The static structure factor is computed via

S(k) = 〈ρ†kρk〉 , ρk =
∑
n

exp(ik · rn) . (4)

QMC results for the homogeneous S(k) are shown in the
main panel of Fig. 3 for a wide range of coupling strengths
(calculated at re kF = 0.056). We have also calculated
the spin-parallel component of S(k), and found S↑↑ =
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FIG. 3. (color online) Homogeneous static structure factor
S(k) as a function of k/kF , for various coupling strengths
computed using QMC. In the inset we compare the trap-
averaged calculation of S(k) at unitarity with two new experi-
mental results (red diamonds). The measurements lie slightly
above the QMC predictions.

S↓↓ = 0.5 within the error bars for k > 4kF , in agreement
with [26] and the experiments of [25].

Local density approximation. Knowing the homoge-
neous contact and structure factor we can compute the
trap-averaged values for these quantities using the local
density approximation (LDA). The overall chemical po-
tential µ is related to the local chemical potential µ(r) by
µ = µ(r) + V (r), where V (r) is the trapping potential.
At unitarity,

µ(r) = ξεF (r) = ξ
~2

2m

(
3π2n(r)

)2/3
. (5)

Here εF (r) is the local Fermi energy, n(r) is the density
profile, and we have assumed that ξ does not depend on
r (valid in the unitary and free-gas limits); more gener-
ally we have ξ = ξ(kF (r)a), where kF (r) = (3π2n(r))1/3

and a is the scattering length. For a harmonic trapping
potential V (r) = 1

2mω
2r2, the density profile is given by

n(r) = n(0)

[
1− r2

R2

]3/2
, R ≡

(
ξεF (0)

2

mω2

)1/2

,

(6)
and n(0) is determined by the total number of parti-
cles through the normalization condition

∫
d3r n(r) =

N . Given ξ, N and the frequency of the trap ω, we
completely determine the ground-state density profile.
Within the LDA, the total contact in a trap is given by
I =

∫
d3r I(r), where

I(r)

n(r)kF (r)
= c0 =

C

NkF
, (7)
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and C is obtained from QMC data using Eq. (3). Using
the density profile above, the trapped contact is

I
NkHO

F

=
256

105π
c0ξ
−1/4. (8)

In Fig. 2 we show the contact obtained from QMC simu-
lation (solid green line), compared with the new experi-
mental data presented in this letter (red circles) and the
experimental data of Ref. [28] (grey squares). The LDA
for the static structure factor in a trap is

S(k/kHO
F ) =

1

N

∫
d3r n(r)S(k/kF (r)), (9)

where the dimensionless function S(k/kF ) was deter-
mined via QMC. The inset of Fig. 3 shows the trap-
averaged QMC structure factor at unitarity and two new
experimental points which lie just above the theory (both
data points give the same value for the contact).

Away from unitarity ξ = ξ(kFa), and

µ

εF
= ξ(kFa) +

1

6πkFa

C(kFa)

NkF
, (10)

which follows from E = −PV + µN combined with E =
3
2PV −

~2

8mπaC. As in the unitary case, the central density
determines µ, and the LDA equation µ = µ(r)+V (r) de-
termines the density profile, which is solved numerically
as kFa depends on r through kF (r).
Homogeneous zero-temperature contact. While our

measurements were performed on a trapped (inhomoge-
neous) cloud our result at unitarity also provides a con-
straint on the zero temperature homogeneous contact. At
finite temperatures the equation of state for the unitary
Fermi gas is not known exactly, but, for T � Tc, where
Tc (∼ 0.2THO

F ) is the superfluid transition temperature,
trap averaged measurements are only weakly affected by
the small population in the high temperature wings. Sev-
eral calculations of the temperature dependence of the
trapped contact have recently been reported [17, 35, 36],
and, while these all vary significantly near Tc, at very low
temperatures the predicted T -dependence is very simi-
lar. Comparing the ratios I(T )/I(0) one finds a weak T -
dependence with a relative difference of order 1% in the
range 0 < T/THO

F < 0.08 for the different models. Thus,
with knowledge of the trapped contact at a temperature
T � Tc, we can extrapolate down to zero temperature
and anticipate that systematics due to imprecise knowl-
edge of the equation of state should be small.

Applying this extrapolation we obtain I0/(NkHO
F ) =

3.15 ± 0.09 for the trapped contact as T → 0. Using
Eq. (8) then gives c0 = 3.17 ± 0.09 for the zero tem-
perature homogeneous contact density. The increased
error bar is due to the uncertainty in the extrapolation
to T = 0. We have used ξ = 0.370 ± 0.005 [42, 43] but
note that the uncertainty in ξ barely impacts the overall
error as it appears in Eq. (8) to the 1/4-th power. An

additional systematic arises from the fact that our mea-
surement was performed at a magnetic field of 833.0 G
which is not the exact field B0 at which |a| → ∞. A
recent determination found B0 = 832.18 ± 0.08 G [43],
which, combined with the gradient of Fig. 2, would shift
our result upwards by ∼ 2.5%.

In summary we have presented a high precision de-
termination of the low temperature dynamic and static
structure factors and contact of a strongly interacting
Fermi gas. These systems are an ideal testbed for vali-
dating different many-body calculations where exact pre-
dictions are not available. Our measurements are now at
a level that can discriminate between several of the es-
tablished predictions and agreement with the latest QMC
calculations is at the level of a few percent. The measure-
ment at unitarity also provides a new benchmark, with
error bars at the 3% level, for the T → 0 limit of the
homogeneous contact density which complements recent
measurements at higher temperatures [32].
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