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Abstract. The shear in the mean field velocity Doppler shift is shown to suppress the amplitude 

of electric potential fluctuations by inducing a shift in the peak of the radial wavenumber 

spectrum. An analytic model of the process shows that the fluctuation spectrum shifts in the 

direction where the velocity shear is linearly destabilizing but that nonlinear mixing causes a re-

centering of the spectrum about a shifted radial wavenumber at reduced amplitude A model for 

the 2-D nonlinear spectrum is used in a quasilinear calculation of the transport that is shown to 

accurately reproduce the suppression of energy and particle transport and the Reynolds stress due 

to the velocity shear. 
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The suppression of turbulence, in strongly magnetized plasmas, by shear in the mean field 

E × B drift velocity, due to the electric field normal to magnetic flux surfaces, was first proposed 

[1,2] as an explanation of the high confinement regime (H-mode) observed in tokamaks [3]. The 

theoretical model for suppression was a temporal decorrelation of a passive scalar by advection 

in a field of turbulence. This paradigm was tested with nonlinear gyro-fluid turbulence 

simulations [4]. It was found that shear in the Doppler shift due to the E × B  velocity did 

suppressed turbulence but that the strength of the suppression was an order of magnitude 

stronger than the decorrelation formulas [1,2] predicted. Only shear in the E × B  Doppler shift or 

“Doppler shear” is stabilizing. A sheared velocity parallel to the magnetic field drives a Kelvin-

Helmholtz type instability. It was found [4] that the ion energy flux driven by the turbulence 

could be modeled by a “quench rule” formula. In the quench rule paradigm the intensity of the 

turbulence is reduced by an overall factor of Max 1− αE γExB γmax( ), 0⎡⎣ ⎤⎦ 
where 

γExB = r qd c∂φ−1 ∂ψ( ) dr  is the Waltz-Miller shear rate [4] of the equilibrium electric potential 

φ−1( ) , αE is a positive constant and γmaxis the maximum linear growth rate without Doppler 

shear in the simulation. This formula was shown to be robust over a range of plasma parameters. 

This is suggestive of an essentially linear process, even though it is a model of the nonlinear 

simulation results. In sheared slab geometry, a shear in the E × B  velocity Doppler shift is 

linearly stabilizing [5] to gyro-kinetic eigenmodes. However, in the axisymmetric toroidal 

geometry of a tokamak, the linear ballooning modes become Floquet modes, propagating along 

the magnetic field, when there is Doppler shear. There is no clear correspondence between the 

linear stability of these Floquet modes and the suppression of the turbulence [4]. The quench rule 

has been a successful paradigm for interpreting gyro-kinetic linear stability trends in experiments 

[6] and for predictive quasilinear transport modeling [7].  
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The first indication that the quench rule was incomplete was the inability of the quasilinear 

models to compute the toroidal Reynolds stress driven by Doppler shear in the gyro-kinetic 

turbulence simulations [8]. A finite Reynolds stress requires a breaking of the “poloidal parity” 

of the gyro-kinetic equations, defined as a simultaneous reflection in poloidal angle and parallel 

velocity. The quench rule does not break the poloidal parity. It was first conjectured that the way 

in which a Reynolds stress is produced by the Doppler shear was by causing a finite spectral 

average radial wavenumber [8]. A finite radial wavenumber kx was shown to break the poloidal 

parity of individual gyro-kinetic ballooning eigenmodes and yield a finite quasilinear Reynolds 

stress. If the spectrum of the turbulence is symmetric with respect to the sign of the radial 

wavenumber, then the spectral average radial wavenumber is zero and there is no net Reynolds 

stress. A finite radial wavenumber is linearly stabilizing but this was not, by itself, enough to 

account for the reduction in energy transport [8]. These successes motivated a closer examination 

of the radial wavenumber spectrum of the turbulence that has lead to the new paradigm for how 

the Doppler shear suppresses transport reported in this letter. Details of the verification of the 

new model over a range of plasma parameters, and with parallel flows, will be given in a 

separate paper. 

The time averaged, magnetic flux-surface averaged, Fourier amplitude of the electric 

potential fluctuations in gyro-kinetic units at a fixed poloidal ky = kθρs and radial 

kx = krρs wavenumber is denoted 

Φky,kx
= eφky,kx

Te

2 1 2

a ρs    , (1) 
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where a = minor radius of plasma boundary , ,cs = Te mi , Ωs = eBunit cmi , Te = 

electron temperature, mi = ion mass, Bunit = q r dψ dr , r = minor radius of poloidal magnetic 

flux surface ψ and q = safety factor. All growth rates and shear rates will be in units of cs a. 

The radial wavenumber spectrum of the electric potential amplitude is shown in Fig. 1 (black) 

for nonlinear gyro-kinetic turbulence simulations of the GA standard case parameters [8] with 

finite aspect ratio toroidal geometry and three values of the Doppler shear. The GYRO code [9] 

was used for the simulations in this paper and all cases neglect magnetic fluctuations, keeping 

only the electric potential fluctuations. The shift of the peak of the spectrum to negative kx and 

the reduction in peak amplitude, are clearly seen in Fig. 1. Note that kx is related to the 

conventional ballooning angle constant [4] θ0 by kx = kyŝθ0  where ŝ = rdq qdr is the magnetic 

shear and does not include the ballooning eikonal contribution to the radial wavenumber. A finite 

kx corresponds to a tilted ballooning mode and indeed a poloidal tilt of the 2-D correlation 

function contours is evident in the GYRO simulations with Doppler shear [8].  The model that 

will be presented in this letter is also shown (grey) for these cases. 

These simulations require a larger range of both poloidal and radial wavenumbers, in order to 

resolve the spectral shift, than is typically needed to compute energy transport. The cases in this 

paper have 32 toroidal modes up to ky =1.55 and 340 radial gridpoints, which can accurately 

resolve up to about kmax = 4.2 (half of the maximum grid kx) for Doppler shear ≤ 0.4  and 16 

toroidal modes up to ky =1.5 with 510 radial gridpoints ( kmax =12.6) for larger Doppler shear. 

The spectral average shift is defined by 

kx = dkxΦky,kx

2 kx−∞

∞∫ Φky

2    , where      Φky

2 = dkxΦky,kx

2

−∞

∞∫    . (2) 
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In Fig. 2 the spectral average shift as a function of the Waltz-Miller shear rate is shown for 

ky=0.3 and three different flux surface elongations (κ=1.0,1.5,2.0) The GA-standard case has 

circular flux surfaces (κ=1.0). From Fig. 2, it is clear that the kx-shift has a non-linear 

dependence on the Doppler shear rate that becomes stronger with increasing elongation. The kx-

shift increases with ky. 

      For the zonal flows (i.e. ky = 0) the kx-spectrum is symmetric with respect to the sign of kx 

and kx  is zero even for finite mean field Doppler shear. This is required by the reality 

condition on the Fourier amplitudes of the electric potential fluctuation φky,kx

* = φ−ky,−kx( ) . Hence, 

nonlinear mode coupling to the zonal flows does not contribute to the spectral shift of the finite 

ky fluctuations. In these GYRO simulations, as with previous cases with kinetic electrons [10], 

the turbulence is not shut off (quenched) as was seen in adiabatic electron simulations [4], even 

for very large Doppler shear γExB = 0.8( ).  

Over the resolved kx range, the spectral shape without Doppler shear is very well fit by the 

Lorentzian function 

Φmodel =
γky

eff

cyky
2 + cxkx

2( )
   ,      where   γky

eff = cyky
2 Φky,kx kx=0

    . (3) 

The coefficient cy is arbitrary, γky

eff  is an effective non-linear growthrate , and cx = 0.56cy is 

chosen to make the integrated intensity match Φ ky
2 = Φ model

2⎛
⎝ 
⎜ ⎞

⎠
⎟ at ky = 0.3. For ky > 0.05 this 

model [Eq. 3] fits the shape of the GYRO spectrum with an average standard deviation of 12% 

with the same value of cx/cy.  
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The shift in the kx-spectrum induced by the Doppler shear can be qualitatively modeled with 

an analytic nonlinear Bernoulli differential equation.  

dΦmodel

dt
= γky

effΦmodel + γExBky
∂Φmodel

∂kx

− cyky
2 + cxkx

2( )Φmodel
2 = 0    . (4) 

This is an interpretive model of the nonlinear saturation of the amplitude of the electric potential 

fluctuations. The first two terms are the linear growth γky

eff and the Fourier transform of the radial 

variation of the E × B  velocity Doppler shift about a flux surface rs: 

 that can be derived directly from the linear gyro-kinetic 

equation. The third quadratic nonlinear term represents the effect of the fluctuating E × B  non-

linear mode coupling. The actual nonlinear mode coupling term in the gyro-kinetic equation [11] 

is a convolution over the 2-D wavenumber space kx, ky( ). The model nonlinear term in Eq. (4) 

is local in kx ,ky( ) but it has the same wavenumber and field powers as the physical nonlinearity 

and it gives the correct GYRO spectrum [Eq. (3)] for zero Doppler shear. Without the non-linear 

term, and identifying γky

eff → ∂
∂t

 , Eq. 4 has traveling wave solutions Φmodel = Φmodel kx − kyγExBt( )  

related to the Floquet modes [4]. The non-linear term locallizes the traveling waves to a standing 

wave form Φmodel = Φmodel kx + kyγExB γky

eff( ) . The model equation Eq. (4) can be solved 

analytically. Substituting  Φmodel = Exp − kxγky

eff( ) kyγExB( )⎡
⎣

⎤
⎦ Κ  into Eq. (4) gives a linear 

equation for the function Κ kx( ) . 

           kyγExB
∂Κ
∂kx

= −Exp −
kxγky

eff

kyγExB

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

cyky
2 + cxkx

2( )     (5)  
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Integrating Eq. (5) shows how the tilt, from the odd in kx exponential factor due to the E × B  

shear, becomes averaged, by the symmetric shape of the spectrum, into a new spectrum 

symmetric about a shifted peak. Choosing the integration constant so that the solution reduces to 

Eq. (3) for  gives 

Φmodel = γk y

eff cyky
2 + cx kx model

2 + cx kx − kx model( )2⎡
⎣⎢

⎤
⎦⎥   , (6) 

where kx model
= −kyγExB γky

eff . The notation anticipates the result that kx model is the spectral 

average shift [Eq. (2)] evaluated using the model amplitude [Eq. (6)]. The model solution [Eq. 

(6)] captures the primary qualitative features of the GYRO spectrum [Fig. 1] that the peak shifts 

and the amplitude is reduced. The direction of the shift is governed by the sign of the Doppler 

shear. The un-shifted spectrum [Eq. (3)] substituted into Eq. (4) yields a Doppler shear term that 

is linearly destabilizing for kyγExB ∂Φmodel ∂kx > 0 . The interaction with the nonlinear term re-

centers the spectrum about a new peak in the destabilized direction. The numerator of the 

solution γky

eff( )  is unchanged by the shift. The Lorentzian shape of the model spectrum about the 

peak is also unchanged by the shift but the peak amplitude is reduced by the factor 

1+ cx kx model
2 cyky

2( )−1
. The suppression of the turbulence is due to the nonlinear re-centering 

response to the Doppler shear induced linear destabilization that preserves the Lorentzian shape 

about the peak.  

The model solution Eq. (6) does not match the GYRO spectrum in two important details. The 

linear relation, between the spectral average shift and the Doppler shear, has the right sign, but it 

cannot fit the GYRO results in Fig.2 so the actual shift is used in the final model. The shifted 
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peak amplitude in the GYRO spectrum [Fig. 1] is below the curve of the unshifted spectrum, 

whereas the model spectrum peak is on the unshifted curve. This defect of the model equation 

solutions is true even if the linear growthrate as a function of kx is used in the nonlinear 

Bernoulli equation [Eq. 4] instead of γky

eff . Clearly, the decay of the linear growth rate with 

kx ky  plays some role in determining the shape of the GYRO spectrum, but the simplified 

nonlinearity in the model equation does not reproduce that physics. In order to fit the reduction 

of the peak of the GYRO spectrum, a reduction factor that depends only on the spectral average 

shift is applied to the model spectrum [Eq. (6)].  

Φss =
γky

eff 1+ αx kx ky( )4⎡
⎣⎢

⎤
⎦⎥

cyky
2 + cx kx

2 + cx kx − kx( )2⎡
⎣⎢

⎤
⎦⎥    

. (7) 

This is the final model that was used to fit to the GYRO spectra in Fig. 1. It has the feature that it 

depends only on the spectral shift kx  computed from the GYRO spectra and not directly on the 

Doppler shear. Hence, it will be called the “spectral shift” model. The fit of the spectral shift 

model [Eq. (7)] to the GYRO spectrum is illustrated in Fig. 1 by the grey lines. The fitting 

coefficient in the amplitude reduction factor in Eq. (7) was determined to be αx =1.15. In Fig. 3, 

the integrated intensity Φss
2  for the spectral shift model [Eq. (7)] is compared to the GYRO 

results as a function of the Doppler shear for three different flux surface elongations. Using the 

GYRO simulation values of the spectral shift in the model [Eq. (7)] produces a good fit to the 

intensity, for all three elongations, for the same values of the fit parameters cx cy,αx( ) . This 

demonstrates that the suppression of the turbulence has a simpler relationship to the spectral shift 

than it does to the Doppler shear.  The verification of the spectral shift model [Eq. (7)] for a large 
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number of GYRO parameter scans will be presented in a future paper. The two fitting 

coefficients cx cy , αx( ) = 0.56,1.15( )  in Eq. (7) have been found to depend only weakly on 

plasma parameters (safety factor, magnetic shear, trapped fraction, elongation, Ti/Te). The 

spectral width is increased by the shift kx
2 = cyky

2 cx( ) 1+ 2cx kx
2 cyky

2( )( ) . This is similar to 

the formula for the change in the inverse radial correlation length squared from the decorrelation 

model [12] that is quadratic in the E × B  velocity shear. However, the decorrelation rate 

reduction that results from the peak amplitude reduction of Eq. (7) is much stronger than the 

decorrelation formulas [1,2].   

A direct consequence of the shift in the kx-spectrum is the breaking of poloidal parity, which 

results in a finite Reynolds stress [8]. In order to illustrate this, the transport will be computed 

quasilinearly, using the spectral shift model [Eq. (7)] for the electric potential and a linear 

eigenmode calculation of the quasilinear weights. The Trapped Gyro-Landau Fluid (TGLF) 

equations [13] are a reduced 15-moment fluid model for the linear gyro-kinetic equation. They 

have been verified to be an accurate model for computing the linear eigenmodes. The values of 

the unshifted peak of the electric potential spectrum, and the spectral shift kx  from the GYRO 

simulation, are used in the spectral shift model [Eq. (7)]. The TGLF model is used to compute 

the linear eigenmodes of the most unstable drift-ballooning mode at the ky, kx( )  values of the 

shifted peak. The quasilinear formulas for the electron particle flux, the electron energy flux, the 

ion energy flux and the toroidal ion Reynolds Stress are respectively 

Γe = c0 Δky Φss
2 v̂ExBn̂e φ̂2{ }

ky, kxky

∑    
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Qe = c0
3
2

Δky Φss
2 v̂ExBp̂e φ̂2{ }

ky, kxky

∑  

Qi = c0
3
2

Δky
ky

∑ Φss
2 v̂ExBp̂i φ̂2{ }

ky, kx

  

Πi,tor = c0R0 Δky Φss
2 v̂ExBv̂i,tor φ̂ 2{ }

ky , kxky

∑    . (8) 

The curly brackets contain the quasilinear weights evaluated using the TGLF linear 

eigenfunction moments. All of these are in gyro-kinetic units [13]. The results for the GA 

standard case are shown in Fig. 4. The overall norm c0 was chosen to fit the ion energy flux [Fig. 

4(b)] at zero Doppler shear. The quasilnear weights determine the ratios of the fluxes quite well. 

The reduction of all of the fluxes with the Waltz-Miller shear is fit very well by the quasilinear 

model. The Reynolds stress [Fig. 4(a)] is due to the parity breaking of the linear eigenmodes by 

the finite kx. The good agreement between the quasilinear model and the non-linear GYRO 

results shows that the ballooing eigenmode at the peak of the shifted spectrum is the most 

important linear mode in the non-linear spectrum.  

 Neither the quench rule nor the decorrelation model can produce a Reynolds stress from the 

Doppler shear since they only reduce the intensity. It is remarkable that fitting the properties of 

the kx-spectrum for the electric potential, from the nonlinear GYRO simulations, results in such 

an accurate quasilinear model of the suppression of transport and the generation of a Reynolds 

stress by Doppler shear.  

In this letter, a new paradigm for the way in which E × B  velocity shear suppresses gyro-

kinetic turbulence has been presented. The shear in the E × B  velocity Doppler shift produces a 

shift in the peak, and a reduction in amplitude, of the radial wavenumber spectrum of electric 
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potential fluctuations. These features are qualitatively reproduced by an analytic model of the 

nonlinear saturation. The model shows that the spectrum shift is caused by the Doppler shear 

being linearly destabilizing on one side and stabilizing in the opposite side of the peak. The 

nonlinear mixing re-centers and re-symmetrizes the spectrum about a peak in the destabilizing 

direction, which reduces the amplitude of the peak. The net suppression depends only on the 

spectral shift kx . This is a very different paradigm than the decorrelation [1,2] and quench rule 

[4] paradigms. The new spectral shift paradigm also captures the finite kx tilted ballooning 

eigenmode parity breaking that generates a finite Reynolds stress from the Doppler shear. The 

Reynolds stress due to the Doppler shear is a momentum pinch that can contribute to a finite 

toroidal rotation even when there is no external torque [8]. The spectral shift paradigm provides a 

framework to understand how more general radial variations of the equilibrium profiles, present 

in global gyro-kinetic simulations [14,15], can generate a Reynolds stress, and suppress 

transport. 

This work was supported in part by the US Department of Energy under 

DE-FG02-95ER54309 and DE-FC02-04ER 54698. 
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List of Figure Captions 

FIG. 1. Radial wavenumber spectrum of the time and flux surface averaged electric potential 

fluctuation Fourier amplitude Φky,kx
(black) for the GA-standard case [8] with ky = 0.3 and three 

values of the Doppler shear. Also shown are the spectral shift model spectra (grey) [Eq. (7)]. 

Fig. 2. The spectral average radial wavenumber shift [Eq. (2)] kx  at ky=0.3 as a function of 

the Doppler shear γExB computed from GYRO simulations for three values of the flux surface 

elongation κ =1.0,1.5, 2.0( ) .  

Fig. 3 Integrated intensity Φky

2 [Eq. (2)] at ky = 0.3 as a function of Doppler shear γExB for three 

values of the flux surface elongation κ =1.0,1.5, 2.0( )  comparing the GYRO results (black) with 

the spectral shift model (Gray) [Eq. (7)].  

Fig. 4. Toroidal Reynolds stress (a) and electron and ion energy flux and particle flux (b) from 

GYRO simulations (black) and the spectral shift quasilinear model [Eq. (8)] (grey) as a function 

of Doppler shear rate for the GA standard case [8]. 
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