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Through particle-in-cell simulations, we show that plasma waves carrying trapped electrons can be
amplified manyfold via compressing plasma perpendicularly to the wave vector. These simulations
are the first ab initio demonstration of the conservation of nonlinear action for such waves, which
contains a term independent of the field amplitude. In agreement with the theory, the maximum of
amplification gain is determined by the total initial energy of the trapped-particle average motion
but otherwise is insensitive to the particle distribution. Further compression destroys the wave;
electrons are then untrapped at suprathermal energies and form a residual beam. As compression
continues, the bump-on-tail instability is triggered each time one of the discrete modes comes in
resonance with this beam. Hence, periodic bursts of the electrostatic energy are produced until a
wide quasilinear plateau is formed.

PACS numbers: 52.35.Fp, 47.10.ab, 52.25.-b, 52.65.Rr

Introduction.— Bernstein-Greene-Kruskal (BGK)
waves [1] or, more generally, nonlinear plasma waves
loaded with autoresonantly trapped electrons, have been
studied extensively in literature, as they are generated
ubiquitously, e.g., through kinetic instabilities [2] and
saturation of collisionless damping [3]. Such waves
can also be excited by external fields [4, 5] and then
affect coupling of these fields with the plasma. In
particular, the physics of intense laser-plasma interac-
tions is influenced by the trapped-particle nonlinearity,
an issue of immediate practical importance that has
been studied vigorously recently [6, 7]. It hence has
been found that, even on the very basic level, the
dynamics of BGK-like waves is still full of surprises.
Notwithstanding the existence of well-developed kinetic
theories [8, 9], which are much-inclusive but also not
easily tractable for the same reason, this dynamics is yet
to be understood qualitatively in many aspects [10–13].
Maximally reduced models seem advantageous for this
purpose [14, 15]. In particular, the averaged-Lagrangian
theory of Refs. [11–13] renders analytical transparency,
while, numerically, one-dimensional (1D) particle-in-cell
(PIC) simulations are distinctly enlightening [7, 16–18].
Below we combine these tools to explore the dynamics of
BGK-like waves in time-evolving plasma, which exhibit
a host of interesting paradigmatic phenomena.

We seed a 1D wave as a phase-mixed, periodic BGK-
like structure [Fig. 1(a)] in plasma, which then is com-
pressed perpendicularly to the wave vector, k. While k
is fixed at transverse compression [19], the frequency, ω,
increases, approximately following the increasing plasma
frequency, ωp. Electrons that were trapped initially are
then accelerated such that their average velocity remains
equal to the phase velocity, u = ω/k [Fig. 1(b)]. The
energy density, Wt, associated with their average motion
eventually becomes comparable to the electrostatic en-
ergy density in the wave, WE . Hence, the number of

linear plasmons, or the wave linear action [20], is not
conserved. However, we show that the nonlinear action
is conserved as predicted [11, 12]. What is remarkable
about this nonlinear action for periodic waves is the in-
clusion of a term independent of the wave amplitude, E.
Our work is the first numerical confirmation of this the-
ory, which we use also to explain the observed limit on the
maximum WE attained during compression. Specifically,
this maximum depends on Wt0/WE0 (the index 0 will
refer to the initial, uncompressed BGK structure) but
otherwise is insensitive to the particle distribution. Fur-
ther compression destroys the wave; electrons are then
untrapped at suprathermal energies and form a residual
beam. As compression continues, the bump-on-tail insta-
bility is triggered each time one of discrete modes comes
in resonance with this beam. Hence, periodic bursts of
the electrostatic energy are produced until a wide quasi-
linear plateau is formed. Below we explain these results
in more detail.

Numerical model.— Following Ref. [21], we numer-
ically emulate transverse compression by rescaling the
mass and charge of PIC particles with time. The charge-
to-mass ratio is kept fixed, so rescaling mimics the redis-
tribution of charge across the perpendicularly homoge-
neous charge sheets modeled by the 1D PIC code. As we
take the plasma to be collisionless, the motion parallel to
k is thus fully decoupled from the perpendicular motion,
so the nature of the compression is inessential; e.g., it
can be ballistic or driven by a compressing magnetizing
field. Anisotropy-driven instabilities [22], which could in-
validate this assumption for some physical systems, are
assumed negligible on the compression time scale and
are not addressed below. Also, ions are modeled as a
uniform charge-neutralizing background, the justification
being as in Ref. [17]. Electrons are initialized as a 1D ho-
mogeneous Maxwellian distribution with parallel thermal
speed vT , which is approximately conserved during com-
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FIG. 1: (Color online) Snapshots of typical electron distribu-
tions, f(z, v), associated with nonlinear waves in our PIC sim-
ulations. (a) The initial, uncompressed BGK structure after
the driver is turned off; dashed red is the separatrix confin-
ing trapped electrons. (b) An adiabatically compressed wave;
a phase-space island of trapped electrons has been detached
from the bulk plasma via autoresonant acceleration.

pression. For the longitudinal motion, periodic boundary
conditions are imposed along the z-axis with period L.

A nonlinear wave is excited by an external potential,
φext(z, t), which can be, e.g., a ponderomotive potential,
like in Ref. [23]. The difference from Ref. [23], however,
is that we take φext to be weak and resonant to the lin-
ear Langmuir mode from the beginning, namely, at fixed
driver frequency ω0 = ωp0Ω0. Here, Ω

.
= (1+3κ2)1/2 ≈ 1,

κ
.
= kvT /ωp, and ω2

p
.
= 4πne2/m (the symbol

.
= is used

for definitions), with e and m being the electron charge
and mass; specifically, in order to change the resonant
frequency of the fundamental eigenmode between simu-
lations, we vary ωp0 but maintain fixed k = 2π/L and
vT . (Note that we choose to operate at the longest re-
solved wavelength in order to create controlled settings
suppressing the coalescence instability [24], and, through
that, isolate the effects of our specific interest.) Another
distinction from Ref. [23] is that our φext(z, t) is tran-
sient, similar to Ref. [5], and is used only for seeding
a wave with small initial η

.
= Wt/W (Table I); here,

W = 2Ω2WE is the linear wave energy density, and
WE = E2/(16π). After that, the driver is turned off,
and the wave evolves self-consistently.

Adiabatic effects.— Except for a minor frequency shift
[13], the initial phase-mixed periodic wave is approxi-
mately linear, so its early evolution conserves the lin-
ear action, I =

∫

V
(W/ω) dV , where V is the plasma

volume [19]. Thus I = NI0, where N
.
= n/n0 is the

compression ratio, and n is the plasma density. Since
ω ≈ ωp ∝ n1/2, this results in G ≈ N3/2 for the ampli-
fication gain, G

.
= WE/WE0. At the early stage, G(N)

TABLE I: Parameters of sample simulations, same as for
Figs. 2 and 3. Shown are M0

.
= u0/vT and κ0

.
= kvT /ωp0,

together with the associated η0
.
= Wt0/W0, as inferred from

direct calculation of Wt0 and WE0 for a given initial state.
Also shown is δη0/η0, which is the relative correction to η0, as
determined by fitting the analytical solution, Eq. (1), to the
simulated G(N); here G

.
= WE/WE0, and N

.
= n/n0. The

right column shows the initial ratio of the (space-averaged)
trapped-electron density and the total density, nt0/n0.

M0 κ0 η0 δη0/η0 nt0/n0

3.8 0.30 0.7909 −17% 14.2 × 10−4

4.0 0.28 0.5406 −10% 9.70 × 10−4

4.2 0.26 0.2900 0.01% 5.99 × 10−4

4.4 0.25 0.1981 2.3% 5.20 × 10−4

4.8 0.22 0.0721 11% 3.10 × 10−4

6.0 0.17 0.0055 −8.6% 0.48 × 10−4

is hence the same as at parallel compression [17]. (Keep
in mind that Ref. [17] discusses the wave total energy
rather than the energy density, so an extra factor of N
must be taken into account when comparing with that
paper.) However, since κ ∝ n−1/2 decreases, collision-
less damping is now suppressed at all times. This makes
transverse compression qualitatively different from lon-
gitudinal compression, where induced Landau damping
was found earlier to be the dominant limitation on wave
amplification, since there κ ∝ n3/2 [17]. For example, in
the present study we routinely observeG ∼ 102, and even
then no absolute limit on G is detected in our model.
For given initial conditions, however, the maximum

amplification is still limited, now by nonlinear effects.
Note that trapped electrons are accelerated autoreso-
nantly to high energies as their average velocity stays
equal to u ≫ vT [Fig. 1(b)]. While their average den-
sity, nt = Nnt0, is small, the associated energy density
Wt = ntmu2/2 grows faster than WE ∝ N3/2, namely,
as Wt ∝ ntω

2 ∝ N2, so the amplification is eventually
halted.
Remarkably, this process can also be described quan-

titatively in simple terms. First of all, note that trapped
electrons do not affect the wave shape appreciably, specif-
ically, if ω2

t ≪ ω2

E [25]; here, ωt = (nt/n)
1/2ωp is the

trapped-beam frequency, and ωE = (eEk/m)1/2 is the
bounce frequency. Thus, the wave can be considered
monochromatic, as we also confirm numerically (Fig. 3,
to be discussed below). The half-width of the trapping
island along the velocity axis, vt = kωE, then grows
roughly as vt ∝ E1/2 ∝ N3/8, whereas the island center
moves at u ∝ N1/2. Correspondingly, the island lower
boundary, located at velocities u − vt ≤ v < u, trav-
els up in velocity space. This prevents the wave from
trapping new electrons from the bulk plasma. In turn,
trapping at the upper boundary, u < v ≤ u + vt, is
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FIG. 2: (Color online) (a) Amplification gain vs. compression
ratio for different M0

.
= u0/vT : M0 = 3.8 (black), 4.0 (ma-

genta), 4.2 (cyan), 4.4 (blue), 4.8 (green), and 6.0 (red). For
the remaining parameters, see Table I. Solid are results from
PIC simulations, smoothed on the timescales ω−1

E . Dashed
are Eq. (1) with η0 adjusted to provide the best fit. Dotted,
nearly matching the red curve, is the scaling predicted by
the linear action conservation, G ≈ N3/2. (b) Deteriorating
trapped particle island in phase space during wave decay. The
dashed line marks the linear phase velocity of the resonant
mode, ωpΩ/k. Since u exceeds the island average velocity,
the wave nonlinear frequency shift is negative, as expected.

insignificant, because passing particles are sparse there
[Fig. 1(a)]. Thus, the trapped distribution is preserved
when the island detaches from the bulk, the error in nt

being within few percent in our simulations. Moreover,
a gap appears between the separatrix and the trapped
population [Fig. 1(b)], whose bounce motion remains adi-
abatic and, thus, conserves its phase volume even as the
ambient island expands.
According to Ref. [11], such a wave, as it is quasiperi-

odic and evolves slowly, must conserve its nonlinear ac-
tion, INL. Assuming that the passing-particle response is
approximately linear, one can write INL = I + It, where
It =

∫

(2Wt/ω) dV ; see Eq. (52) in Ref. [11]. (In ap-
plication to homogeneous waves that we consider here,
this theorem can as well be understood as conservation
of the nonlinear wave canonical momentum [12, 20]; also
see Ref. [9].) Note two remarkable features of this result.
First of all, the conserved quantity is insensitive to the
precise shape of the trapped-particle distribution, which
would affect INL only through the nonlinear frequency
shift [13], negligible for our purposes. Second, part of
the wave action, It, happens to be independent of the
wave amplitude, in a drastic variation from how the fun-
damental physics of nonlinear waves is usually pictured
in literature [26]. Using that INL = INL,0, one gets

G = (Ω0/Ω)
2(ω/ω0)N

[

1− 2η0(ω/ω0 − 1)
]

, (1)

or, simply, G ≈ N3/2[1 − 2η0(N
1/2 − 1)]. This shows

that, up to small nonlinear and thermal corrections, η0

FIG. 3: (Color online) Wave evolution for M0 = 4.2 (Table I),
up to N ≃ 100. (a) Electrostatic energy density vs. time
for individual eigenmodes with wavenumbers kℓ = 2πℓ/L:
ℓ = 1 (blue), 2 (magenta), 3 (cyan), 4 (red), 5 (green), and
6 (black). The inset is a closeup of the main figure. (b) Space-
averaged velocity distribution, f(v), in a logarithmic scale;
the normalization is

∫
∞

−∞
f(v) dv = 1. White dashed are the

phase velocities of the first ten eigenmodes (ℓ = 1 . . . 10).

is the only parameter that determines the amplification
gain for a given compression ratio N . The maximum
gain also can be calculated readily as Gm = G(Nm),
where Nm satisfies G′(Nm) = 0. Specifically, we find
Nm ≈ [3(2 + a−1)/8]2, so Gm ≈ 0.013η−3

0
.

To compare these formulas with our simulation results,
the following tests were performed. First, we inferred
η0 by least-squares fitting of our one-parameter analyt-
ical solution to simulated G(N) in the range 1 ≤ N .
Nm. For those best-fitted values, η̄0, the analytical so-
lution reproduces the numerical curves almost perfectly
[Fig. 2(a)]. We then compare η̄0 with η0 obtained by di-
rect calculation of Wt0 and WE0 (Table I). The small de-
viations, δη0

.
= η̄0−η0, which depend onM0

.
= u0/vT , are

explained as follows. At M0 . 3, relatively many passing
electrons are close to the separatrix initially, causing vis-
ible nonlinearity of bulk oscillations; although weak, this
nonlinearity is yet comparable to the trapped-particle ef-
fect, so the function INL(Wt0,WE0) is not quite as sim-
ple as taken above. At M & 5, the bulk nonlinearity is
inessential, but the trapped-particle count is small (less
than one per grid cell), so the numerical noise becomes
an issue. Even so, however, δη0 is seen to be within few
percent, a surprisingly high accuracy for the simple an-
alytical model that we employ. This corroborates our
theoretical assumptions and also serves as the first ab

initio test for the theory proposed in Refs. [11, 12].

Nonadiabatic effects.— At N > Nm, the wave am-
plitude decreases, so the separatrix shrinks. Even the
adiabatic theory thereby predicts that autoresonant elec-
trons will eventually start to escape the trapping island,
at least when G re-approaches unity; this corresponds
to the compression ratio of about 16Nm/9. In reality,



4

however, the wave starts to deteriorate earlier [Fig. 2(b)].
This is caused by the collective instability of the trapped-
particle population like those generically described in
Ref. [27]. The associated field oscillations [Fig. 3(a) and
inset] make the separatrix quiver, at about the bounce
frequency, with increasing amplitude. Hence, electrons
escape the trapping island stochastically and form a ho-
mogeneous beam with velocity vb ≈ u. More precisely,
the beam velocity is slightly lower than u [Fig. 2(b)]; this
is due to the nonlinear frequency shift, which, as pre-
dicted [13], we observe to be negative. The wave hence
finds itself on the descending slope of the beam distribu-
tion fb(v). Then, Landau damping is triggered, and the
wave deteriorates rapidly.

The energy, which the original wave has drawn from
the driver and subsequent compression, yet remains
stored in the beam. As vb stays fixed, it is eventu-
ally matched by the phase velocities of higher modes,
uℓ ≈ ωpL/(2πℓ), which continue to increase [Fig. 3(b)].
Each uℓ≥2 first approaches vb from the ascending slope
of fb(v), and, thus, the ℓth mode is amplified from
noise through the bump-on-tail instability. (Interest-
ingly, modes with ℓ ≥ 2 can draw even more energy than
left by the first mode, since the beam density continues
to grow due to compression. In this sense, having the
original mode to cast once-autoresonant electrons to vb
effectively makes an amplifier out of the plasma, which is
powered by mechanical compression.) Yet uℓ continues
to grow, so it then enters the descending slope, and the
wave again decays through autoresonant acceleration of
trapped electrons and Landau damping. The process is
hence repeated by (ℓ + 1)th mode, and so on. In a sys-
tem of finite size L, such as the one considered here, the
spectrum discreteness can separate these events in time;
then periodic bursts of the electrostatic energy are ob-
served [Fig. 3(a)]. Each resonant mode, however, spreads
out the beam somewhat, so a wide quasilinear plateau is
formed eventually [Fig. 3(b)]. Hence, compression con-
tinues to amplify the residual electrostatic energy, but
distinct bursts disappear.

Conclusions.— This is the first study of BGK-like wave
dynamics in plasma undergoing compression perpendic-
ularly to the wave vector. A host of interesting phenom-
ena are observed in this paradigmatic problem. First,
such compression can amplify a wave manyfold. Second,
this amplification conserves the wave nonlinear action,
for which our study is the first ab initio confirmation.
Third, the amplification gain has an upper limit deter-
mined by the total initial energy of the trapped-particle
average motion but otherwise is insensitive to the par-
ticle distribution. Fourth, the electrostatic energy con-
tinues to produce bursty behavior even after the original
wave has decayed. Apart from the academic interest in
these new phenomena and the numerical demonstration
of the nonlinear action conservation, the fact that BGK-
like waves can be amplified so powerfully suggests new

methods of coupling energy into plasma.
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