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We show, in the context of single photon detection, that an atomic three-level model for a transmon
in a transmission line does not support the predictions of the nonlinear polarisability model known as
the cross-Kerr effect. We show that the induced displacement of a probe in the presence or absence
of a single photon in the signal field, cannot be resolved above the quantum noise in the probe.
This strongly suggests that cross-Kerr media are not suitable for photon counting or related single
photon applications. Our results are presented in the context of a transmon in a one dimensional
microwave waveguide, but the conclusions also apply to optical systems.
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The cross-Kerr effect, whereby the phase of one field is
changed proportional to the intensity of another, arises
from the nonlinear response of an atomic medium to ap-
plied fields. It is usually described phenomenologically in
terms of a third order term in the nonlinear polarisabil-
ity, a description that is valid when the applied fields are
strong and absorption is weak [1]. Microscopic deriva-
tions of the Kerr effect are discussed in [2–4].

Many proposed quantum applications of the cross-Kerr
effect suppose that at least one of the fields is very
weak — perhaps only a single photon — including non-
demolition measurements [5–8], state preparation [9–13],
teleportation [14] and logic gates build-up [15–19]. These
schemes require strong Kerr nonlinearities at the single
photon level. It is not clear that the standard model
of a cross-Kerr effect, based on a third-order nonlinear
polarisability, should be valid for such weak fields.

Doubts regarding the utility of the Kerr effect in single
photon applications have been raised before. Shapiro and
Razevi [20, 21] considered the multimode nature of the
single photon pulse and found that there is extra phase
noise compared to simple single mode calculations, lead-
ing to constraints on the achievable phase shifts. Gea-
Banacloche [22] pointed out that it is impossible to obtain
large phase shifts via the Kerr effect with single photon
wave-packets. None of this prior work has addressed in
detail the question of the cross-Kerr phase shift on a co-
herent probe field in the presence or absence of a single
photon in the control field.

Recently, superconducting circuits have become im-
portant test-beds for microwave quantum optics, demon-
strating quantised fields, artificial “atoms” (i.e. with well-
resolved energy levels), and strong “atom”-field interac-
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tions [23–25]. The transmon [26] is a promising super-
conducting artificial atom due to its insensitivity to 1/f
noise, strong anharmonicity, and large dipole moment.
Indeed, the typical size of the transmon is comparable
to the dielectric gap in an on-chip microwave waveguide,
and so the dipole moment is within an order of magnitude
of the maximum that it can possibly be, given the geo-
metrical constraints of the dielectric gap [27]. This fact
leads leads to very large cross-Kerr nonlinearities, where
the transmon provides the non-linear polarisability. Re-
cent experiments using a superconducting transmon in
a 1D microwave transmission line have demonstrated gi-
gantic cross-Kerr nonlinearities: a control field with on

average 1 photon induces a phase shift in the probe field
of 11 degrees [28]. Importantly, in this experiment, the
microwave fields were freely propagating; no cavity was
involved.

This large cross-Kerr phase shift immediately suggests
the possibility of constructing a broadband, number-
resolving, microwave-photon counter, as long as the
cross-Kerr induced displacement of the probe exceeds the
intrinsic quantum noise in the probe. Indeed, broadband
microwave photon counting is a crucial missing piece of
the experimental quantum microwave toolbox, although
there are several proposals for detecting microwave pho-
tons [29–33].

In fact, the cross-Kerr interaction is strictly an effec-
tive interaction based on weak field–dipole coupling ap-
proximations. Ultimately it is mediated by the strong
nonlinearities inherent in an anharmonic oscillator (e.g.
an atom), so it must eventually break down. The mi-
croscopic dynamics of become important in the limit of
very strong coupling, which was achieved in [28]. In this
work we investigate the coupled field–transmon dynam-
ics in this limit, using proposals for microwave–photon
counting as a technical objective to evaluate the validity
of the cross-Kerr approximation.

We consider two fields, a probe and a control, inci-
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FIG. 1: (Color online) (a) Illustrative experimental arrangement.

A photon source emits a Fock state microwave photon into a 1D

planar transmission line with a Ξ-type three-level transmon em-

bedded in it. (b) Transmon level structure. The coherent probe

couples |b〉 ↔ |c〉, and the control couples |a〉 ↔ |b〉. The interac-

tion induced phase shift in the probe field is detected by homodyne

detection. (c) Cartoon of the Kerr-induced probe displacement.

dent on a transmon, which is treated as a three-level, Ξ-
type system in a one-dimensional transmission line. Such
three-level systems are prototypes for analysing cross-
Kerr nonlinearities [6]. We treat the transmon dynamics
exactly, including quantum noise in the incident fields.
The probe is assumed to be a coherent field (or possi-
bly squeezed), while the control field is in a Fock state,
whose photon number, n, we are trying to measure. For
our purposes, we restrict to n = 0 or 1.
We show that in spite of the very large cross-Kerr non-

linearity, the induced probe displacement (i.e. the sig-
nal) in the presence of a single control photon is limited
by saturation of the transmon, and is always less than
the probe’s own quantum noise. That is, the signal-to-
noise ratio (SNR) is always below unity. Moreover, our
conclusion also extends to the N-type four-level atomic
level configuration, with which cross-Kerr media are of-
ten modelled [34–37]. These conclusions have profound
implications for the quantum applications of cross-Kerr
phenomena.
The transmon levels are {|a〉, |b〉, |c〉}, with correspond-

ing energy levels, ωi, and decay rates, γi, as shown in
Fig. 1. Relaxation between transmon energy levels is
fast compared to dephasing rates, which we neglect. The
probe field, b̂, is in a coherent state |β〉, and is nearly reso-
nant with the |b〉 ↔ |c〉 transition, whilst the control field
is in a Fock state of n = 0 or 1 photons, at a frequency
ωcon close to the |a〉 ↔ |b〉 transition. Qualitatively, the
control field induces a transient population transfer into
the state |b〉, and the probe field induces transmon polar-
isation, σbc, between states |b〉 and |c〉. This polarisation
couples back to the probe field, so that the probe field is
modified from its input state according to the standard
input-output relation

b̂out = b̂in +
√
γcσ̂bc. (1)

where b̂ is the annihilation operator of the probe field.
The homodyne detector monitoring the output probe
field yields a photocurrent given by

Jhom
n (t) = 〈ŷ(t)〉+ ξ(t). (2)

where ŷ = −i
√
γc(σ̂bc− σ̂cb) is the transmon polarisation,

σ̂ij = |i〉〈j| and ξdt = dW (t) is a Weiner process satis-
fying E[dW ] = 0, E[d2W ] = dt. Here E[X ] represents
the classical expectation value of the variable X . Finally,
the useful signal is the weighted integral of the homodyne
current over the lifetime, T , of the photon wave packet

Sn =

∫ ∞

0

dt Jhom
n (t)w(t) (3)

where w(t) is a weight function. To be more specific,
we choose f(t) to be “top-hat” function, w(t) = 1 for
0 < t < T , w(t) = 0 otherwise [43]. If n = 0 the transmon
dynamics are trivial, and E[S0] = 0. For n = 1, E[S1] 6=
0, and so S1 represents the useful signal associated with a
single photon in the control field. However, in any given
measurement, the homodyne current includes quantum
noise, characterised by the variance (σSn

)2 = E[S2

n] −
E[Sn]

2. To a good approximation, σSn
is independent of

the photon number, n, so we define the signal-to-noise
ratio, SNR = E[S1]/(

√
2σS). Note that we assume that

the homodyne current will also include technical noise
sources. We ignore these, so that SNR represents the
quantum limit for this scheme.
To study quantitatively the system consisting of a

transmon interacting with propagating microwave fields,
we adopt two different (but consistent) formulations,
yielding both numerical and analytic results.
In the first formulation we suppose the control photon

is generated by a fictitious cavity which is initially in a
Fock state. The field in the cavity decays into the 1D
waveguide, and propagates to the transmon, which me-
diates the interaction between the control and the probe
[44]. To analyse this system, we employ a stochastic cas-
caded master equation (SME) [38, 39]. The SME de-
scribing the conditional dynamics of the cascaded cavity
field–transmon density matrix, ρ, is given by

dρ = (−i[Hs, ρ] + γconD[âcon]ρ+D[L̂b]ρ+D[L̂c]ρ)dt

+
√
γcon([L̂b, ρâ

†
con] + [âconρ, L̂

†
b])dt

+H[L̂ce
−iπ/2]ρ dW (4)

where L̂b =
√
γbσ̂ab, L̂c =

√
γcσ̂bc and

Hs = ∆cσ̂cc +∆bσ̂bb + Ωp(σ̂bc + σ̂cb),

D[r̂]ρ =
1

2
(2r̂ρr̂† − ρr̂†r̂ − r̂†r̂ρ),

H[r̂]ρ = r̂ρ+ ρr̂† − Tr[̂rρ+ ρr̂†]ρ,

∆b = ωba − ωcon, ∆c = ∆p + ∆b (∆p = ωbc − ωp)
Ωp =

√
γconβ, β is the amplitude of the coherent probe
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field, âcon(â
†
con) are the annihilation (creation) opera-

tors for the control field and γcon is the control pho-
ton linewidth. Line 2 of Eq. (4) describes the unidi-
rectional evolution between the photon source and the
transmon. We solve Eq. (4) for the conditional state of
the field–transmon system, from which we compute the
conditional homodyne photocurrent, using Eq. (2). This
approach allows us to generate a simulated measurement
record for ensembles of events in which n = 0 or 1, from
which we obtain a histogram of homodyne currents to
estimate the SNR.
The second formulation uses the Fock state master

equation (FME) [40, 41], in which the propagating pho-
ton wave packet drives the transmon directly [45]. The
transmon density matrix, ρm,n, acquires indices repre-
senting coherences between the transmon and photon
Fock subspaces m and n. The FME is then

ρ̇m,n(t) = −i[Hs, ρm,n] +D[L̂b]ρm,n +D[L̂c]ρm,n (5)

+
√
nf∗(t)[L̂b, ρm,n−1] +

√
mf(t)[ρm−1,n, L̂

†
b]

where f(t) is a complex valued probability amplitude
that determines the photon counting rate, |f(t)|2. We
first solve the dynamics for ρ0,0(t), which drives ρ0,1(t)
and ρ1,0(t), which in turn drives ρ1,1(t). Then, using the
quantum regression theorem [42], we calculate the SNR
analytically [46].
If the photon is derived from exponential (E) decay of a

cavity mode, then f(t) =
√
γcon exp(−γcont/2). Further,

this method can handle arbitrary photon wave packets,
and we include Gaussian (G) and rectangular (R), shown
in Fig. 2(top), where T = 1/γcon is the pulse’s tempo-
ral width. The photon induces a polarisation, 〈ŷ(t)〉, in
the transmon, shown in Fig. 2(bottom). Different pulse
shapes yield modest differences in 〈ŷ(t)〉.
Fig. 3 shows the SNR as a function of the probe am-

plitude with detunings and γcon optimised. The points
represents 5000 trajectories of the SME, whilst the solid
line is computed from the FME, showing good agree-
ment. The inset shows histograms of stochastic calcu-
lations of the integrated homodyne current with n = 0
and n = 1 (using parameters that optimises the SNR).
Figure 4 shows SNR versus the detunings ∆b and ∆c.
Clearly, the optimal SNR is located at ∆b = ∆c = 0. We
also numerically investigated the effect of varying the ra-
tio γc/γb and for 1 < γc/γb < 100 found that the SNR
changes little from the value for the transmon γc/γb = 2,
and remains less than unity [47]. Regardless of parame-
ter settings the SNR is less than unity, so we conclude it
is impossible to reliably distinguish between n = 0 and
1 in a single shot. This is borne out by the large overlap
of the histograms.
We can understand the fact that SNR< 1 in the follow-

ing way: a single control photon induces a variation in
the transmon polarisation ŷ, which manifests as a fluc-
tuation in the homodyne current according to Eq. (2).
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FIG. 2: (Color online) The transmon responses for different
control field wave packets. (top) blue dot-dashed curve: Gaus-
sian pulse (G); Green solid curve: rectangular pulse (R); Orange
dashed curve: Exponentially-decayed pulse (E); and (bottom) the
corresponding polarisation response of the transmon. The pa-
rameters are: ∆c = ∆b = 0, γcon = 0.6672γb, γc = 2γb, β =
0.4γb(E); 0.47γb(R); 0.59γb(G).

.

However the polarisation of the transmon is a bounded
operator: ||ŷ|| ≤ √

γ
b
. The optimal photon wave packet

width is T ∼ γ−1

b (any shorter and the transmon can-
not respond to the field; any longer and vacuum noise
in the homodyne signal grows), so the expected signal

is bounded by |E[S1]| ≤
∫ T

0
dt ||ŷ|| ≤ γ

−1/2
b . Quantum

noise in Eq. (2) gives σ2

S ≥ var[
∫ T

0
dt ξ] = γ−1

b so we see
that SNR = |E[S1]|/σS ≤ 1. Fig. 3 bears out this analy-
sis: for small probe field amplitudes, the SNR increases,
however the transmon dynamics eventually saturates at
large amplitudes.
This argument suggests that the fundamental problem

is the saturation of the transmon transition. It may be
thought that this can addressed by increasing the number
of transmons. We therefore briefly consider a system of
N transmons, arranged such that the spacing between
adjacent transmons is much smaller than the wavelength,
the transmons are described by the collective atomic spin
operators

Ŝij =
1√
N

∑

k

σk
ij (6)

The stochastic master equation describing the n-
transmon system is given by

dρ = −i[Hs, ρ]dt+ γconD[âcon]ρdt+NγbD[Ŝab]ρdt

+ NγcD[Ŝbc]ρdt−
√

Nγconγb([Ŝba, âcρ] + [ρâ†c, Ŝab])dt

+
√

NγcH[Ŝbce
−iπ/2]ρdW (7)
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FIG. 4: (Color online) The SNR of the probe field as functions
of detunings ∆b and ∆c. The other parameters are: γc = 2γb,
γcon = 0.6772γb, β = 0.4γb.

where

Hs = N(∆cŜcc +∆bŜb) +
√

Nγcβ(Ŝbc + Ŝcb) (8)

We can see that the ensemble master equation (7) is the
same form as the single-transmon master equation, albeit
with decay rates and energies scaled by an N -dependent
factor, leading to faster dynamics. This merely rescales

the parameters in the problem, so cannot increase the
SNR above the optimised single transmon case.
It is worth commenting on a number of other avenues

that we have explored, but which yield similar negative
results (for details, see the supplementary information).
Firstly, squeezing the probe field in an appropriate

quadrature reduces the homodyne noise, and may im-
prove the SNR. Since we are monitoring the phase dis-
placement of the probe field, we should squeeze in this
quadrature. However this enhances noise in the conju-
gate, amplitude quadrature. The additional noise in the
probe amplitude adds noise to the transmon dynamics
arising from fluctuations in Ωp, which ultimately feed
through to the output field. We find numerically that
these tradeoffs yield no net improvement in the SNR [48].
Secondly, if the control photon interacts sequentially

with M transmons in series, each with independent
probes, the overall SNR would be increased by a factor
of M1/2. However, the Kramers-Kronig relations require
that a large phase shift implies a large reflection proba-
bility, so that there is a tradeoff between the phase shift
versus reflection probability at each transmon. Again,
we find numerically that the tradeoff yields no net im-
provement in SNR [49].
Thirdly, some schemes for inducing cross-Kerr nonlin-

earities in optical systems use an N-type four-level system
[34, 35], with a strong classical field addressing the inter-
mediate transition. In the limit of strong driving, this
maps onto the same three-level structure we consider in
this work, so the conclusions we have reached here also
apply to such N-type systems [50].
A number of proposals suggest using weak Kerr media

to build controlled phase and C-NOT gates with fewer
resources than linear optical schemes [17, 19]. In these
schemes the cross-Kerr phase shift per photon is much
less than π, so a strong coherent bus compensates for the
weak nonlinearity, such that the small cross-Kerr phase
shift manifests as a large displacement of the strong co-
herent field. However the saturation of the cross-Kerr ef-
fect described above indicates that once the displacement
of the strong coherent field approaches its own quantum
noise, saturation effects lead to the breakdown of the ef-
fective cross-Kerr description, rendering such protocols
ineffective.
In summary, we have investigated the feasibility of mi-

crowave photon-counting based on an induced cross-Kerr
nonlinearity arising from coupling to a large anharmonic
dipole. We find that saturation of the transmon transi-
tion limits the SNR to less than unity. As such, it is not
possible to use strong, atom-induced cross-Kerr nonlin-
earities to perform single photon detection. This conclu-
sion applies to a number of extensions of the basic model,
including multiple transmons, cascaded transmons and
N-type, four-level system. Further, it limits the applica-
bility of any proposal that requires a cross-Kerr nonlin-
earity to produce a displacement of a coherent field by
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an amount greater than the intrinsic quantum noise in
the coherent field: it is precisely this condition where the
effective cross-Kerr description breaks down, and satura-
tion effects become dominant.
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