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We investigate Lee–Yang zeros of generating functions of dynamical observables and establish a
general relation between phase transitions in ensembles of trajectories of stochastic many-body sys-
tems and the time evolution of high-order cumulants of such observables. This connects dynamical
free energies for full counting statistics in the long-time limit, which can be obtained via large-
deviation methods and whose singularities indicate dynamical phase transitions, to observables that
are directly accessible in simulation and experiment. As an illustration we consider facilitated spin
models of glasses and show that from the short-time behavior of high-order cumulants it is possible
to infer the existence and location of dynamical or “space-time” transitions in these systems.
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Introduction.— Phase transitions are a central topic
in the statistical mechanics of equilibrium and non-
equilibrium systems. In problems with physically mean-
ingful interactions, phase transitions occur in the limit
of large system size. For dynamical phase transitions,
this also implies the limit of long times. In experiment
or simulation of systems with complex dynamics, how-
ever, often only the short-time dynamics can be probed,
making it difficult to investigate dynamical transitions.
Furthermore, such non-equilibrium transitions may be
driven by “counting” fields [1–8] which can be hard to
relate to physically accessible parameters. In this Let-
ter we provide a potential resolution to these problems
by establishing a connection between phase transitions in
ensembles of long-time dynamical trajectories of classical
stochastic many-body systems [1–5] and the dynamics of
physical observables at short times [9–11].

Figure 1 illustrates our approach and results. Panel (a)
shows a dynamical trajectory of a simple lattice sys-
tem which displays complex dynamics, in this exam-
ple the one-dimensional East model of a glass former
[12]. Facilitated models such as the East model show
pronounced dynamical spatial fluctuations [13] (a phe-
nomenon characteristic of glasses known as dynamical
heterogeneity; for reviews see Refs. [14–16]). These large
spatio-temporal fluctuations give rise to fat tails [17] in
the full counting statistics (FCS) [18] of time-extensive
dynamical observables. This is shown in Fig. 1(b) for
the dynamical activity k ≡ K/t per unit time of the East
model. The dynamical activity K is the number of con-
figuration changes in a trajectory [1, 2, 4, 19]. Associ-
ated with the distribution P (K, t) is the moment gener-
ating function (MGF) Z(s, t) ≡

∑

K e−sKP (K, t), which
at long times t → ∞ has a large-deviation (LD) form,
Z(s, t) ∝ exp {tθ(s)} [1–5]. The LD function −θ(s) is a
dynamical free energy for the counting process. Its an-
alytic properties carry information about the phase be-
havior of ensembles of trajectories.

In the East model example θ(s) has a first-order singu-
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FIG. 1. (color online). Dynamical phase transitions and Lee–
Yang zeros. (a) Trajectory of the one-dimensional East model,
showing the state of up/down (black/white) spins on the lat-
tice in time (with temperature T = 0.8, N = 150 lattices
sites, and tmax = 1000 time steps); dynamic heterogeneity
is evident in the “space-time bubbles” of the trajectory [13].
(b) Probability P (k, t) of the activity k ≡ K/t per unit time
(green/full curve); dashed line is a Gaussian distribution with
same mean and variance. (c) The LD function θ(s) is singular
at sc = 0 (blue/top) where the average activity is discontinu-
ous (red/bottom), indicative of a first-order dynamical tran-
sition [2]. (d) Lee–Yang zeros of the MGF in the complex-s
plane, extracted from the cumulants of K, allow us to extrap-
olate sc from short-time observables.

larity at sc = 0, Fig. 1(c), which indicates that dynamics
takes place at the coexistence of two dynamical or “space-
time” phases, an active phase with 〈k〉(s) ≡ −∂sθ(s) > 0
for t → ∞ (the equilibrium phase where relaxation is
possible) and an inactive phase with 〈k〉(s) = 0 (the dy-
namical “glass” phase) [2]. The variable s driving the
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transition is a “counting” field which biases the trajec-
tory ensemble from the actual dynamical one at s = 0,
but whose connection to physically controllable param-
eters can be hard to establish. Similar trajectory phase
transitions are observed in other classical and quantum
systems with complex dynamics [3–8].
Here we demonstrate that it is possible to infer the ex-

istence and location of singularities of θ(s), indicative of
phase transitions in the space of long-time trajectories,
from short-time observables at s = 0. Specifically, we
show that: (i) from a dynamical version of the Lee–Yang
theorem [20], zeros of the MGF in the complex-s plane at
finite t will move to the real-s line in the limit of t→∞
if there are any singularities in θ(s); and (ii) these zeros
can be obtained from the short-time and finite-size be-
havior of cumulants [9–11] of dynamic observables such
as the activity. Figure 1(d) illustrates this result for the
East model: the sc = 0 singularity of the thermodynamic
and long-time limit can be extrapolated from the lead-
ing Lee–Yang zeros extracted from short-time (typically
on the order of the relaxation time) cumulant dynamics.
This offers the possibility of studying trajectory phase
transitions in FCS via observables that are directly ac-
cessible in simulation and experiment.
Formalism.— For concreteness we consider stochastic

processes described by the Master equation [21]

∂tP (C, t) = −r(C)P (C, t) +
∑

C′

W (C′ → C)P (C′, t). (1)

Here, P (C, t) is the probability that the system is in the
configuration C at time t. The transition rate from con-
figuration C′ to C is denoted as W (C′ → C) and r(C) =
∑

C′ W (C → C′) is the total escape rate from C. By def-
inition W (C → C) = 0. Equation (1) can be written
in the convenient matrix notation ∂t|P (t)〉 = W|P (t)〉,
where the matrix W is defined as

W(C, C′) ≡W (C′ → C)− r(C)δC,C′ , (2)

and the vector |P (t)〉 contains the probabilities P (C, t)’s.
We classify trajectories according to their dynamical

activity K—the total number of spin-flips in the case
of spin models considered here [1, 2]. (Similar argu-
ments can be applied to analyze ensembles of trajecto-
ries classified by other time-extensive dynamic observ-
ables, see e. g. Refs. [1–3]). The probability that the
system is in configuration C at time t, having changed
configuration K times, is denoted as P (C|K, t). Then
P (K, t) =

∑

C P (C|K, t) and Z(s, t) =
∑

C P (C, s, t),
where P (C, s, t) =

∑

K P (C|K, t)e−sK [1, 2]. The corre-
sponding vector |P (s, t)〉 obeys ∂t|P (s, t)〉 = Ws|P (s, t)〉,
where the generalized Master operator is [1, 2]

Ws(C, C
′) ≡ e−sW (C′ → C)− r(C)δC,C′ . (3)

Formally, the solution to Eq. (3) is |P (s, t)〉 = eWst|P (0)〉,
assuming for instance that the initial state |P (0)〉 is the

equilibrium distribution defined by Ws=0|P (0)〉 = 0. By
using the “flat” state, 〈−| ≡ (1, . . . , 1), we can express
the MGF as Z(s, t) = 〈−|P (s, t)〉 = 〈−|eWst|P (0)〉 =
∑

j cj(s)e
λj(s)t in terms of the eigenvalues λj(s) of Ws

and corresponding expansion coefficients cj(s). The cu-
mulant generating function (CGF) is defined in terms
of the MGF as Θ(s, t) ≡ logZ(s, t), which delivers the
cumulants of K by differentiation with respect to the
counting variable s at s = 0,

〈〈Kn〉〉(t) = (−1)n∂n
s Θ(s, t)|s→0. (4)

At long times the MGF function becomes exponential in
time [1]; its rate of change is determined by the eigenvalue
with the largest real-part, such that Θ(s, t) → tθ(s),
where θ(s) ≡ max[λj(s)] is the LD function.

Singularities and dynamical transitions.— Fluctua-
tions in the dynamical system can be understood from
the analytic properties of θ(s). For example, a first-
order dynamical phase transition corresponds to singu-
larities in θ(s) so that its first derivative is discontinuous
[2], see Fig. 1(c). This occurs at a real s = sc where
the two largest eigenvalues of Ws become degenerate,
λ0(sc) = λ1(sc). As a central result of this work, we
show below how such dynamical phase transitions, oc-
curring in the long-time limit, can be inferred from the
high-order cumulants of K at finite times and at s = 0,
i. e. evolving under the unbiased dynamics.

To this end we consider the zeros of the MGF in the
vicinity of the transition value, s ≃ sc, where the two
largest eigenvalues are nearly degenerate λ0(s) ≃ λ1(s)
and we may write Z(s, t) ≃ c0(s)e

λ0(s)t + c1(s)e
λ1(s)t.

The zeros of the MGF are determined by the equations
λ0(s) = λ1(s)+[log c1(s)/c0(s)+iπ(2m+1)]/t for integer
m. In the long-time limit, these equations all reduce to
λ0(s) = λ1(s), and thus with increasing time all zeros
sj(t) move towards the transition value sc on the real-
axis. (At finite times, the zeros must be complex, since
Z(s, t) > 0 for real s.) This is in essence the theory
of phase transitions of Lee and Yang [20], here applied
to dynamical systems [22]. Accordingly, we refer to the
(time-dependent) zeros sj(t) of the MGF as Lee–Yang
zeros.

High-order cumulants and Lee–Yang zeros.— The mo-
tion of the Lee–Yang zeros in the complex plane can be
inferred from the high-order cumulants of K. Impor-
tantly, the zeros of the MGF correspond to logarithmic
singularities of the CGF which determine the high-order
derivatives of the CGF (the cumulants) according to Dar-
boux’s theorem [23]. Writing the MGF in terms of the
Lee–Yang zeros as Z(s, t) =

∏

j [sj(t) − s]/sj(t), where
Z(0, t) = 1 reflects the normalization

∑

K P (K, t) = 1
at all times, the CGF becomes Θ(s, t) =

∑

j(log[sj(t) −
s] − log[sj(t)]). The Lee–Yang zeros come in complex-
conjugate pairs, since the MGF is real for real s. Com-
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bined with Eq. (4) we readily find [9–11]

〈〈Kn〉〉(t) = (−1)(n−1)(n− 1)!
∑

j

e−in arg{sj(t)}

|sj(t)|n
. (5)

This result shows that higher-order cumulants generically
grow as the factorial of the cumulant order n, and os-
cillate as a function of any parameter that changes the
complex argument arg{sj(t)} [9]. This behavior has been
observed experimentally [9, 24]. For large n, the sum is
dominated by the pair s0(t) and s∗0(t) of zeros closest to
s = 0, and the expression further simplifies to [9–11, 25]

〈〈Kn〉〉(t) ≃ (−1)(n−1)(n− 1)!
2 cos[n arg{s0(t)}]

|s0(t)|n
. (6)

We can solve this simple relation for s0, given the ratios

of cumulants κ
(±)
n (t) ≡ 〈〈Kn±1〉〉(t)/〈〈Kn〉〉(t). We then

obtain the matrix equation





1 −
κ(+)
n

n

1 −
κ
(+)
n+1

n+1



 ·

[

−(s0 + s∗0)
|s0|

2

]

=





(n− 1)κ
(−)
n

nκ
(−)
n+1



 (7)

which directly yields s0(t) from four consecutive cumu-
lants [10, 11, 26]. We now employ this method to in-
vestigate dynamical phase transitions in kinetically con-
strained models of glass formers.
Dynamical transitions in facilitated glass models.—

As an example of how the ideas above can be applied,
we study trajectory transitions [2] in facilitated spin
models of glasses [12]. For simplicity we consider one-
dimensional models, defined in terms of binary variables
ni = 0, 1, where i = 1, . . . , N denote sites on a chain.
The energy function is E = J

∑

i ni, and all interactions
emerge via kinetic constrains, which stipulate that a site
i changes with a rate that is determined by the state of
its nearest neighbors i ± 1 [12]. Concretely, we focus on
the Fredrickson–Andersen (FA) model [27] and on the
East model [28]. In the FA model, a site can only change
if either of its nearest neighbors is in the up state, i. e.
the transitions 11 → 10 and 11 → 01 occur with rate 1,
11 ← 10 and 11 ← 01 with rate e−J/T , but 010 ⇌ 000
are not allowed. In the East model, facilitation is via
the left neighbor only, so that 11 → 10 and 11 ← 10
occur with rates 1 and e−J/T , respectively, but 01 ⇌ 00
are not allowed. At low T , there is a conflict between
lowering the energy and having enough excited spins to
evolve dynamically, which gives rise to glassy slow-down
and dynamical heterogeneity [12, 13] in these systems;
the East model in particular seems to capture the basic
physics of glassy dynamical arrest [16].
Results.— Figure 2 shows our numerical simulations

for the high-order cumulants of the activity K as func-
tions of time for the East and FA models (full lines).
The cumulants grow dramatically with the cumulant or-
der and oscillate as functions of time (the absolute value
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FIG. 2. (color online). High-order cumulants of the activity in
facilitated models of glass formers. The upper (lower) panels
show the time-evolution of the cumulants of order n = 4− 7
for the East (FA) model with N = 30 sites at T = 0.8 (left)
and T = 1.0 (right). Simulations are shown with full lines,
while dashed lines indicate the approximation Eq. (6) based
on the closest pair of Lee–Yang zeros which are extracted from
the numerical data using Eq. (7). The motion of the closest
pair of Lee–Yang zeros corresponding to the East model at
T = 0.8 is shown in Fig. 1(d).

is shown on a logarithmic scale, such that downwards-
pointing spikes on the curves correspond to the cumu-
lants crossing zero). This is due to the Lee–Yang zeros
sj(t) approaching the transition value at sc = 0 accord-
ing to Eq. (5), causing the large growth of the cumu-
lants. Initially, P (K, t = 0) = δK,0 and all cumulants of
the activity are zero, implying that the Lee–Yang zeros
are infinitely far from sc = 0 and 1/|sj(t = 0)| = 0. At
very short times, where P (K = 0, t) ≈ 1 > P (1, t) ≫
P (2, t)≫ . . ., the leading pair of Lee–Yang zeros are de-
termined by the equation Z(s, t) ≃ P (0, t)+P (1, t)e−s =
0 with solutions s0(t), s

∗
0(t) = − log{P (0, t)/P (1, t)}±iπ.

Thus, to begin with the Lee–Yang zeros move along the
lines ±iπ from −∞± iπ, before approaching sc = 0. We
now use Eq. (7) to deduce the motion of the leading Lee–
Yang zeros from the numerical data.

Figure 1(d) shows the leading pair of Lee–Yang ze-
ros, s0(t) and s∗0(t), for the East model with N = 30
sites at temperature T = 0.8 as they move towards the
first-order transition point at sc = 0. To validate the
extraction of the leading Lee–Yang zeros from the cumu-
lants of the activity using Eq. (7), we plug the solution
s0(t) back into Eq. (6) and compare the result with the
numerical data. In Fig. 2 we show the numerical results
(full lines) together with the approximation in Eq. (6)
based on the extracted pair of Lee–Yang zeros (dashed
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FIG. 3. (color online). Finite-size scaling of the first-order
transition point. Upper (lower) panels show the real-part of
sc(t), extracted from the cumulants for the East (FA) model
with N = 15− 50 sites at T = 0.8 (left) and T = 1.0 (right).
Numerical values are shown with circles, while linear fits based
on Eq. (8) are shown with full lines. Upper insets show the
imaginary part of sc(t) as a function of the inverse time 1/t.

Lower insets show the extrapolated long-time limit s
(∞)
c (N)

as a function of the inverse system size 1/N .

line). The figure corroborates that we indeed are extract-
ing the leading pair of Lee–Yang zeros. Some deviations,
in particular at long times, are observed as the second
pair of Lee–Yang zeros also come close to s = 0 and start
contributing significantly to the sum in Eq. (5). Since
the second pair of Lee–Yang zeros is not included in Eq.
(6), a shift in the frequency of the oscillations as a func-
tion of time is also observed. If needed, the accuracy of
the method can be improved by using higher cumulants
[10, 11, 26].
In Fig. 3 we analyze the finite-size scaling of the tran-

sition point sc. The real-part of the transition point is
predicted to scale as [29]

Re[sc(t)] ≃ α/t+ s(∞)
c (N), (8)

where the coefficient α depends on the temperature T ,

and s
(∞)
c (N) ∝ 1/N is the long-time value, which for the

East and FA models should approach sc = 0 in the limit
N → ∞. Our numerical results for the East and FA
models confirm the predicted scaling behavior. For each
system size in the range N = 15 to 50, we find an approx-
imately linear dependence on the inverse time 1/t, allow-

ing us to extrapolate the values of s
(∞)
c (N) in the t→∞

limit. We also verify that the imaginary part of sc ap-
proaches zero in the long-time/large-system limit, see up-
per insets. In the lower insets, we show the extrapolated

values of s
(∞)
c (N) as a function of the inverse system size

1/N . These results show that the value sc = 0 is ap-
proached in the large-system-size limit. Some deviations
are seen for the larger systems as we reach the limits of
the numerical accuracy of our method. Our results show
that it is possible to infer the existence and location of
dynamical singular points, which are indicative of phase
transitions in the space of long-time trajectories, from
high-order short-time cumulants at s = 0. The typical
time-scale necessary to infer a dynamical phase transi-
tion is on the order of the relaxation time. Our method
can also be used for systems where the transition point
on the real-s line is at sc 6= 0 [5].
Conclusions.— We have investigated the Lee–Yang ze-

ros of generating functions of dynamical observables and
demonstrated how singularities in the long-time limit, in-
dicative of dynamical phase transitions, can be inferred
from the short-time dynamics of high-order cumulants
in finite-size systems. We hope that our approach may
facilitate theoretical and experimental studies of trajec-
tory phase transitions in stochastic many-body systems.
An important task to address in future work is to apply
similar ideas to dynamical phase transitions in quantum
many-body systems [7, 8].
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