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Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology,
quantum chemical dynamics and quantum computation. We derive a time-energy uncertainty relation for open
quantum systems undergoing a general, completely positive and trace preserving (CPT) evolution which pro-
vides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous
to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being
played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified
in different scenarios, ranging from the estimation of the passage time to the determination of precision limits
for quantum metrology in the presence of dephasing noise.
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How fast can a quantum system evolve? Quantum mechan-
ics acts as a legislative body imposing speed limits to the evo-
lution of quantum systems. While these limits are both ulti-
mate and fundamental, at the same time, their existence is at
the center of a surge of activity, as a result of their manifold
applications, including the identification of precision bounds
in quantum metrology [1], the formulation of computational
limits of physical systems [2], and the development of quan-
tum optimal control algorithms [3].

Bounds on the speed of evolution are intimately related to
the concept of the passage time τP, which is the required time
for a given pure state |χ〉 to become orthogonal to itself under
unitary dynamics [4]. One of the early answers to this problem
was provided by Mandelstam and Tamm (MT), who showed
that the passage time can be lower-bounded by the inverse of
the variance in the energy of the system so that

τ ≥ π

2
h̄

∆H
, (1)

where ∆H = (〈H2〉 − 〈H〉2)1/2, whenever the dynamics un-
der study is governed by an Hermitian Hamiltonian H [5–12].
A simple geometric interpretation of this result was provided
by Brody using the Fubini-Study metric in the Hilbert space
spanned by the initial state and its orthogonal complement
[13]. Indeed, the passage time problem can be posed as a
quantum brachistochrone problem. From this perspective, a
particularly exciting result was found: whenever the Hamil-
tonian is non-Hermitian PT-symmetric, the passage time can
be made arbitrarily small without violating the time-energy
uncertainty principle [14, 15]. A second bound, due to Mar-
golus and Levitin (ML), takes the simpler form τ ≥ π

2
h̄

〈H〉−E0
where the zero of energy is generally shifted to the ground
state energy so that E0 = 0 [16]. This bound has been ap-
plied to ascertain fundamental computational limits in nature
[2, 17].

Despite the growing body of literature on the subject, the
analysis has almost exclusively been focused on unitary dy-

namics of isolated quantum systems. An analogous bound for
open quantum systems is highly desirable, since ultimately
all systems are coupled to an environment [18, 19]. As an
example, such a bound on the evolution of an open system
would help to address the robustness of quantum simulators
and computers against decoherence [20], as well as the rel-
evance of the specific nature of the noise, and in particular
whether or not it is Markovian, in phase estimation problems
of interest in metrology and precision spectroscopy [21, 22].

The MT bound can be derived by considering the time evo-
lution of the overlap α = |〈ψt |ψ0〉| between the initial state
|ψ0〉 and the quantum state |ψt〉 at time t subject to a unitary
evolution U(t) = exp{−iHt/h̄}. It can be shown that the MT-
limit (eq. 1) is achievable, as for a suitable Hamiltonian H we
can satisfy the differential equation h̄ dα2

dt =−2∆Hα
√

1−α2

which for α = cosφ is easily seen to result in h̄φ̇ = ∆H thus
matching the MT bound [23].

In the case of open system dynamics we need to consider
general non-unitary quantum evolutions and have the free-
dom to choose a variety of distance measures between quan-
tum states. One natural choice here is the fidelity between
two mixed states ρ and σ , which is given by F(ρ,σ) =
tr[
√√

ρ σ
√

ρ]. The quantum speed limit then provides a
lower bound on the time τ that is required to achieve, for a
given initial state ρ(0) and a target fidelity ftarget , the condi-
tion F(ρt ,ρ0) < ftarget subject to an open system evolution.
Ideally, such bounds should reduce to the MT bound in the
case of unitary dynamics on pure states and/or be easy to com-
pute.

Bounds on τ may be derived by taking inspiration from
the variational characterization of the fidelity F(ρS,σS) =
max[|〈ψSE |φ SE〉|] [24], where the maximization is over all
|ψSE〉 (|φ SE〉) on a larger Hilbert space H SE that are purifica-
tions of the mixed states ρS (σS) on the smaller system S, that
is trE [|ψSE〉〈ψSE |] = ρS (trE [|φ SE〉〈φ SE |] = σS). Then for any
specific purification the inequality F(ρS,σS) ≥ |〈ψSE |φ SE〉|
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holds. A general time evolution of a subsystem ρ̇S = L ρS

can always be generated by a joint unitary dynamics USE
t of

the system with an environment such that

ρ
S
t = trB[USE

t |ψSE
0 〉〈ψSE

0 |U
†,SE
t ]

where ρS
0 = trB[|ψSE

0 〉〈ψSE
0 |]. Such a dynamics will be gener-

ated by a suitable Hamiltonian HSE
t but it should be noted that

the choice of |ψSE
0 〉, USE

t and thus HSE
t is not unique.

Now we can make use of the fact that

ftarget ≥ F(ρS
t ,ρ

S
0 )≥ F(USE

t |ψSE
0 〉, |ψSE

0 〉)

for any choice of purification of ρS
t and ρS

0 and any choice
of unitary dynamics USE

t that generates ρ̇S = L ρS on the
subsystem. This implies that any choice of purification and
unitary evolution will achieve ftarget ≥ F(USE

t |ψSE
0 〉, |ψSE

0 〉)
at an earlier time t than ftarget ≥ F(ρS

τ ,ρ
S
0 ), i.e. t < τ . As a

consequence, for any choice of |ψSE
0 〉, USE

t and thus HSE
t we

obtain a lower bound on τ . If HSE
t is given, then we can com-

pute ∆HSE
t in the state |ψSE

t 〉 and immediately provide a lower
bound on τ via the MT and h̄∆φ = h̄

∫ t
0 dsφ̇ ≤

∫ t
0 ds∆HSE

s .
Needless to say, performing the optimization over all possible
purifications and all possible HSE

t is a challenging task that
will be very hard to perform in the general case. Two routes
are suggested themselves. Firstly, well chosen |ψSE

0 〉, USE
t and

thus HSE
t will lead to excellent bounds for reasonably simple

cases. Secondly, analytical lower bounds on τ may also be ob-
tained by studying different distance measures that are easier
to handle and thus admit closed formulae for lower bounds.

Here we follow this second approach to find an analytical
and easy to compute lower bound on the speed of evolution in
open quantum systems. We shall derive a bound analogous to
the seminal result by MT where the energy variance of the ini-
tial state is replaced by a more general measure taking into ac-
count the coupling to the environment. We shall pay particular
attention to the dynamics governed by a dynamical semigroup
in which case the evolution of the system is ruled by a mas-
ter equation of the Lindblad form [25]. We shall show in the
following that Markovian systems are subjected to a MT-type
of bound where the adjoint of the generator of the dynami-
cal semigroup plays the role of the system Hamiltonian in the
unitary case.

Decay of an open quantum system Consider a given sys-
tem described by a state ρ0 (from now we drop the upper in-
dex S for convenience) coupled to an environment in a state
ρE

0 , and assume both system and environment are weakly cou-
pled such that the initial global state can be approximated
by ρ0⊗ρE

0 . Let the global reversible dynamics be governed
by a unitary evolution operator Ut . The reduced dynamics
of the system is given by a one-parameter family of dynam-
ical maps ρ 7→ Vtρ := trE [Utρ0 ⊗ ρE

0 U†
t ], parameterized by

the time variable t ∈ R+. Whenever the typical time scale
of the environment is much smaller than that of the system,
one can assume a Markovian dynamics. Under Markovian
dynamics, such maps form a quantum dynamical semigroup
Vt+sρ = VtVsρ , t,s > 0 (we assume that the open system is

not subjected to an external time-dependent field so that the
generator of the quantum dynamical semigroup is time inde-
pendent). Any such map can be represented by a Markovian
master equation

dρt

dt
= L ρt , (2)

where the generator of Vt admits the Lindblad form [25]

L ρ =− i
h̄
[H,ρ]+∑

k

(
FkρF†

k −
1
2

{
F†

k Fk,ρ
})

, (3)

such that Vtρ0 = etL ρ0. In such scenario we might pose the
following question: Which is the bound to the speed of evo-
lution from an initial state ρ0 under the action of a quantum
dynamical semigroup Vt? To answer this question we intro-
duce as a figure of merit the so called relative purity [26]

f (t) =
tr [ρ0ρt ]

tr(ρ2
0 )

, (4)

which is a generalization of the survival probability S (t) =
|〈χ|e−iHt/h̄|χ〉|2 often used for a pure state |χ〉 subject to a
Hamiltonian H, and that has proved useful in studying quan-
tum speed limits in the unitary case [17].

Derivation of the bound from the (Lindblad) master equa-
tion Let us now characterize the decay rate of the relative
purity. Note that whenever the generator admits a Lindblad
form (i.e. for a Markovian quantum master equation),

ḟ (t) =
tr [ρ0 L ρt ]

tr(ρ2
0 )

=
tr
[
L †ρ0 ρt

]
tr(ρ2

0 )
(5)

where the adjoint of the generator of the dynamical map reads

L †
ρ0 =

i
h̄
[H,ρ0]+∑

k

(
F†

k ρ0Fk−
1
2

{
F†

k Fk,ρ0

})
. (6)

The rate of change of f can then be bounded using
the Cauchy-Schwarz inequality for operators, |tr(A†B)|2 ≤
tr(A†A)tr(B†B). Then

| ḟ (t)| ≤
√

tr[(L †ρ0)2]tr[ρ2
t ]/trρ2

0

≤
√

tr[(L †ρ0)2]/trρ2
0 , (7)

that is, by making reference exclusively to the initial state and
the dynamical map. Let us parametrize f (t) = cosϑ with
ϑ ∈ [0,π/2]. Upon integration between ϑ = 0 ( f (0) = 1)
and a final ϑ = θ , the following bound to the required time of
evolution is found

τθ ≥
|cosθ −1|trρ2

0√
tr[(L †ρ0)2]

≥
4θ 2trρ2

0

π2
√

tr[(L †ρ0)2]
. (8)

Here, v=
√

tr[(L †ρ0)2] provides an upper bound to the speed
of evolution. This generalizes the MT uncertainty relation
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for open quantum systems governed by a Markovian quan-
tum master equation. The generalization to a time-dependent
Lindbladian L (t) is straightforward and reads

τθ ≥
4θ 2trρ2

0

π2
√

tr[(L †ρ0)2]
. (9)

where X = τ
−1
θ

∫ τθ

0 Xdt.
Derivation of the bound using general quantum channels

To remove the Markovian approximation, we note that any
kind of time evolution of a quantum state ρ0 can be written
in the form ρt = ∑α Kα(t,0)ρ0K†

α(t,0). In particular, Kα(t,0)
is independent of ρ0 if the dynamical map is induced from an
extended system with the initial condition ρSE

0 = ρ0⊗ρE(0).
Then, the dynamical map is said to be universal. Let such map
govern the evolution and consider

f (t) = tr[ρ0ρt ] = ∑
α

tr[ρ0Kα(t,0)ρ0K†
α(t,0)]. (10)

Parametrizing f (t) = cosθ , a bound can be derived

τθ ≥
2θ 2

π2

√
tr[ρ2

0 ]

∑α ||Kα(t,0)ρ0K̇†
α(t,0)||

(11)

where ||A|| =
√

tr(A†A) is the Hilbert-Schmidt norm of A.
Details of the derivation are provided in [27].

Applications The bound to the speed of evolution pre-
sented above is the main result of this paper. In the following
we shall analyze some particular cases to illustrate its use, see
too [27].

Passage time. - Under unitary time evolution, the passage
time is the minimum time required for a time evolving state
|χ(t)〉 to become orthogonal to its initial value |χ(0)〉. Let
us consider a pure state such that trρ2

0 = 1 and let L †ρ =
−L ρ = i[H, |χ〉〈χ|]/h̄. It follows from Eq. (9), that

τπ/2 ≥
h̄√
2∆E

. (12)

Alternatively, for α = 1, K = exp[−i(H−〈χ|H|χ〉)t/h̄], τθ ≥
h̄

2∆E , a factor 1/
√

2 smaller. A similar reduction of the bound
occurs for time-dependent Hamiltonians, in agreement with
[10]. The usual definition of the passage time τP = π h̄

2∆E , refers
to the orthogonalization measured by the square root of the fi-
delity (sometimes referred to as the integrity or survival prob-
ability amplitude), which for a pure states under unitary dy-
namics reduces to |〈χ(0)|χ(t)〉| [4–7].

Non-Hermitian Hamiltonians. - Non-Hermitian Hamiltoni-
ans are ubiquitous in quantum physics and enjoy of a wide
range of applications from quantum optics [28] to reactive
scattering [29]. Their standard derivation is based on Fesh-
bach’s partitioning theory, that allows to describe the effective
dynamics of a quantum system governed by a Hamiltonian H,
when restricted to a given subspace associated with projector
P (with complement Q, such that P+Q = 1, P2 = P, Q2 = Q).
The effective Hamiltonian governing the dynamics in the re-
stricted subspace, Heff = PHP + PHQ(E − QHQ)−1QHP,

is generally non-Hermitian. Under HP the density matrix
iρ̇ = (Heffρ − ρH†

eff)/h̄. Similarly, in open systems under
Markovian dynamics it is customary to split the generator
of the dynamical map in two contributions Lc and D , i.e.
L =Lc +D . Lc describes the coherent evolution associated
with the non-Hermitian Hamiltonian Heff = H− ih̄ 1

2 ∑k F†
k Fk,

while the dissipator Dρ = ∑k FkρF†
k is associated with spon-

taneous decay, and it is a jump operator [28]. More generally,
let Heff = H− iΓ, where H and Γ are both Hermitian opera-
tors, so that Lcρ =−i[H,ρ]/h̄−{Γ,ρ}/h̄. Noting that upon
setting Dρ = 0, the bound to the speed of evolution under
non-Hermitian Hamiltonians still holds, it follows from Eq.
(7) that

τθ ≥
4θ 2h̄trρ2

0

π2
√

tr[(L †
c ρ)2]

,

=
4θ 2h̄trρ2

0

π2
√

tr(−[H,ρ]2 +{Γ,ρ}2−2i[H,Γ]ρ2)
,

=
4θ 2h̄√

2π2
√

∆H2 +(〈Γ2〉+ 〈Γ〉2)− i〈[H,Γ]〉
, (13)

where the last line applies exclusively to pure states. Using
Eq. (11) with α = 1, K = exp[−i(H −〈χ|H|χ〉)t/h̄− (Γ−
i〈χ|Γ|χ〉)t/h̄], one finds 1/

√
2 times the same expression.

From quantum speed limits to metrological bounds The
ultimate bound to parameter estimation is dictated by the abil-
ity to efficiently discriminate neighboring quantum states. In
a seminal paper [30], Braunstein and Caves (BC) derived a
quantum Cramer-Rao bound for the uncertainty in the (local)
estimation of a classical parameter φ of the form:

∆φ ≥ 1√
νFQ(φ)

, (14)

where FQ denotes the quantum Fisher information and ν is
the total number of repetitions of the experiment where a
φ -dependence is linearly imprinted via a general evolution.
When the dynamics is unitary, an initial preparation of a probe
state in a cat (GHZ) state of N subsystems allows to satu-
rate the lower bound and achieve a Heisenberg-limited reso-
lution where ∆φ ∼ 1/N. If the N subsystems are used inde-
pendently, so that the input state is factorizable as N product
states, only the standard scaling dictated by the central limit
theorem ∆φ ∼ 1/

√
N is achievable. This implies that the er-

ror bars in the actual estimation of a parameter φ could be
reduced by 1

√
N by means of employing an entangled input

probe provided that the system evolves unitarily. Whether or
not the standard scaling can be surpassed when the system’s
dynamics is open is a most relevant issue where only partial
results are known. Motivated by experiments on precision
spectroscopy, where a phase difference is estimated which
is proportional to the detuning between an external oscilla-
tor and a selected atomic frequency, we will focus here on
phase estimation problems under dephasing noise. Assuming
decoherence to be Markovian and affecting each subsystem



4

independently (local noise assumption), it was shown in [21]
that this type of noise renders product and maximally entan-
gled states metrologically equivalent, and argued that Marko-
vian dephasing would restore the standard scaling with an op-
timal resolution to be achieved by a type of partially entangled
states so that ∆φ opt/∆φ p = 1/

√
e. Subsequent work proved

this bound to be achievable asymptotically [31] but only very
recently it was proved in all generality that the bound is sharp
and coincides with the one imposed by the maximization of
the quantum Fisher information [32]. The metrological equiv-
alence of product and maximally entangled state preparations
under Markovian decoherence can be predicted with the new
bound eq. (8), which yields the ratio tGHZ = tp/N, where tGHZ
and tp are the optimal interrogation times when using maxi-
mally entangled and product state inputs, respectively. This
can be easily shown by writing the dephasing master equation
in the interaction picture as

ρ̇ =−γρ + γσzρσz, (15)

and considering a pure state ρ0 = |χ〉〈χ| of the form |χ〉 =
(|0〉+ |1〉)/

√
2. Then, L †ρ0 =−γρ0 + γσzρ0σz and

tr[(L †
ρ0)

2] = 2γ
2. (16)

This yields a minimal orthogonalization time tp = 1/
√

2γ .
Repeating the same procedure for a maximally entangled in-
put of the (GHZ) form ρ0 = |χ〉〈χ| with |χ〉 = (|0〉⊗N +
|1〉⊗N)/

√
2, we obtain an optimal interrogation time tGHZ =

tp/N which leads to ∆φ GHZ = ∆φ p when the resolution is es-
timated operationally as ∆φ =< ∆O2 >2 /

√
ν | ∂<O>

∂φ
|, with

O denoting a projective population measurement, which is
known to be optimal for this specific context. Alternatively,
we can estimate the Fisher information in the form

F(ρφ ) = ∑
i

1
pi

(
∂ pi

∂φ

)2

, (17)

where pi = tr(ρφ Pi) and Pi is a population projective measure-
ment. Note that this measurement procedure is optimal in this
context. The resulting expressions for product and cat states
are, respectively

Fp = Ne−2γt t2, (18)

FGHZ = N2e−2Nγt t2. (19)

The ratio ∆φ GHZ/∆φ p =
√

(νpFp)/(νghzFGHZ) therefore
equals 1 when considering the optimal interrogations times as
dictated by the bound eq. (8). Moreover, for pure states ρ0 =
|χ〉〈χ| and the case of Markovian pure dephasing L †ρ0 =

γ ∑k[−ρ0 + σ
(k)
z ρ0σ

(k)
z ] we have that

√
tr[(L †ρ0)2] =

γ

√
(N2−2N ∑k |〈χ|σ

(k)
z |χ〉|2 +∑kl |〈χ|σ

(k)
z σ

(l)
z |χ〉|2 ≤√

2γN (Note that this may be generalized to the mixed state
case and any form of local noise as the locality implies that
number of terms in L †ρ0 grows linearly in the number of
subsystems N). Then with eq. (8) and the fact that the Fisher
information obeys F ≤ N2 [33, 34], the limit on the speed

of evolution imposes the persistence of the standard scaling
∆φ ∼ 1/

√
N no matter how weak the dephasing rate. This is

a result that is now firmly established [32, 35] and that comes
out in a rather natural fashion within this new framework.

So far we have exploited specifically the fact that the sys-
tem’s dynamics is ruled by a Lindblad master equation. How-
ever, our general derivation considers a (linear) dynamical
map that is trace preserving and completely positive (CPT)
but not necessarily divisible [36]. As a result, the bound could
be valid for non Markovian dynamics as long as they admit a
representation in terms of a CP map [37]. We have evaluated
the prediction for the optimal interrogation times of product
and cat states for a model of non-Markovian dephasing of this
type, as proposed in [38], and obtained the ratio tGHZ = tp/N,
just as in the Markov case. This seems to be in contradiction
with recent results for models of non Markovian dephasing,
which predict a ratio tGHZ = tp/

√
N [22] and raises an in-

teresting conjecture with which we finish this section. There
could exist forms of coloured noise for which the metrologi-
cal equivalence between cats-products input probes still holds.
This inequivalence in the achievable resolution of a phase esti-
mation could then be exploited to quantitatively quantify non-
Markovianity.

Conclusions– A bound to the speed of evolution under
an open-system dynamics has been provided, generalising the
classic result by Mandelstam and Tamm known for the unitary
case. In the Markovian limit, we have shown that the adjoint
of the generator of the dynamical semigroup plays the role of
the commutator with the Hamiltonian in the MT bound. De-
spite the fact that the bound is not tight, in the sense of non
coinciding with the unitary solution for closed systems, it al-
lows to naturally predict the inaccessibility of the Heisenberg
limit under Markovian noise. Moreover, when using the gen-
eral form of the bound for universal channels, the new limit
on the speed of evolution suggest the inequivalence of differ-
ent forms of coloured noise for precision spectroscopy. Our
results are applicable to a wide variety of scenarios including
bounding decoherence rates [39], and quantum speed limits in
dissipative state preparation [40], quantum computation and
simulation assisted by dissipation [41].

Note– After the completion of this work, we learned
about reference [42] devoted to quantum speed limits to the
global unitary dynamics of a system emmbedded in an envi-
ronment.
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